On the subsemigroup generated by ordered idempotents of a regular semigroup
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 205-211.

Voir la notice de l'article provenant de la source Library of Science

An element e of an ordered semigroup S is called an ordered idempotent if e ≤ e². Here we characterize the subsemigroup ≤(S)> generated by the set of all ordered idempotents of a regular ordered semigroup S. If S is a regular ordered semigroup then ≤(S)> is also regular. If S is a regular ordered semigroup generated by its ordered idempotents then every ideal of S is generated as a subsemigroup by ordered idempotents.
Keywords: ordered regular, ordered inverse, ordered idempotent, downward closed, completely regular
@article{DMGAA_2015_35_2_a6,
     author = {Bhuniya, Anjan and Kalyan Hansda, Kalyan},
     title = {On the subsemigroup generated by ordered idempotents of a regular semigroup},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {205--211},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/}
}
TY  - JOUR
AU  - Bhuniya, Anjan
AU  - Kalyan Hansda, Kalyan
TI  - On the subsemigroup generated by ordered idempotents of a regular semigroup
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 205
EP  - 211
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/
LA  - en
ID  - DMGAA_2015_35_2_a6
ER  - 
%0 Journal Article
%A Bhuniya, Anjan
%A Kalyan Hansda, Kalyan
%T On the subsemigroup generated by ordered idempotents of a regular semigroup
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 205-211
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/
%G en
%F DMGAA_2015_35_2_a6
Bhuniya, Anjan; Kalyan Hansda, Kalyan. On the subsemigroup generated by ordered idempotents of a regular semigroup. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 205-211. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/

[1] A.K. Bhuniya and K. Hansda, Complete semilattice of ordered semigroups, communicated.

[2] C. Eberhart, W. Williams and I. Kinch, Idempotent-generated regular semigroups, J. Austral. Math. Soc. 15 (1) (1973), 35-41. doi: 10.1017/S1446788700012726

[3] T.E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208. doi: 10.1017/S0004972700045950

[4] T.E. Hall, Orthodox semigroups, Pacific J. Math. 1, 677-686. doi: 10.2140/pjm.1971.39.677

[5] T.E. Hall, On regular semigroups, J. Algebra 24 (1973), l-24. doi: 10.1016/0021-8693(73)90150-6

[6] K. Hansda, Bi-ideals in Clifford ordered semigroup, Discuss. Math. Gen. Alg. and Appl. 33 (2013), 73-84. doi: 10.7151/dmgaa.1195

[7] K. Hansda, Regularity of subsemigroups generated by ordered idempotents, Quasigroups and Related Systems 22 (2014), 217-222.

[8] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1) (1992), 123-130.

[9] D.B. McAlister, A note on congruneces on orthodox semigroups, Glasgow J. Math. 26 (1985), 25-30. doi: 10.1017/S0017089500005735

[10] J.C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. XII (3) (1971), 222-341. doi: 10.1017/S1446788700009794

[11] J.C. Meakin, Congruences on orthodox semigroups II, J. Austral. Math. Soc. XIII (3) (1972), 259-266. doi: 10.1017/S1446788700013665

[12] J.E. Milles, Certain congruences on orthodox semigroups, Pacific J. Math. 64 (1) (1976), 217-226. doi: 10.2140/pjm.1976.64.217

[13] M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum 6 (1973), 113-128. doi: 10.1007/BF02389116