Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2015_35_2_a6, author = {Bhuniya, Anjan and Kalyan Hansda, Kalyan}, title = {On the subsemigroup generated by ordered idempotents of a regular semigroup}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {205--211}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/} }
TY - JOUR AU - Bhuniya, Anjan AU - Kalyan Hansda, Kalyan TI - On the subsemigroup generated by ordered idempotents of a regular semigroup JO - Discussiones Mathematicae. General Algebra and Applications PY - 2015 SP - 205 EP - 211 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/ LA - en ID - DMGAA_2015_35_2_a6 ER -
%0 Journal Article %A Bhuniya, Anjan %A Kalyan Hansda, Kalyan %T On the subsemigroup generated by ordered idempotents of a regular semigroup %J Discussiones Mathematicae. General Algebra and Applications %D 2015 %P 205-211 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/ %G en %F DMGAA_2015_35_2_a6
Bhuniya, Anjan; Kalyan Hansda, Kalyan. On the subsemigroup generated by ordered idempotents of a regular semigroup. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 205-211. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a6/
[1] A.K. Bhuniya and K. Hansda, Complete semilattice of ordered semigroups, communicated.
[2] C. Eberhart, W. Williams and I. Kinch, Idempotent-generated regular semigroups, J. Austral. Math. Soc. 15 (1) (1973), 35-41. doi: 10.1017/S1446788700012726
[3] T.E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208. doi: 10.1017/S0004972700045950
[4] T.E. Hall, Orthodox semigroups, Pacific J. Math. 1, 677-686. doi: 10.2140/pjm.1971.39.677
[5] T.E. Hall, On regular semigroups, J. Algebra 24 (1973), l-24. doi: 10.1016/0021-8693(73)90150-6
[6] K. Hansda, Bi-ideals in Clifford ordered semigroup, Discuss. Math. Gen. Alg. and Appl. 33 (2013), 73-84. doi: 10.7151/dmgaa.1195
[7] K. Hansda, Regularity of subsemigroups generated by ordered idempotents, Quasigroups and Related Systems 22 (2014), 217-222.
[8] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1) (1992), 123-130.
[9] D.B. McAlister, A note on congruneces on orthodox semigroups, Glasgow J. Math. 26 (1985), 25-30. doi: 10.1017/S0017089500005735
[10] J.C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. XII (3) (1971), 222-341. doi: 10.1017/S1446788700009794
[11] J.C. Meakin, Congruences on orthodox semigroups II, J. Austral. Math. Soc. XIII (3) (1972), 259-266. doi: 10.1017/S1446788700013665
[12] J.E. Milles, Certain congruences on orthodox semigroups, Pacific J. Math. 64 (1) (1976), 217-226. doi: 10.2140/pjm.1976.64.217
[13] M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum 6 (1973), 113-128. doi: 10.1007/BF02389116