On the connectivity of the annihilating-ideal graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 195-204.

Voir la notice de l'article provenant de la source Library of Science

Let R be a commutative ring with identity and *(R) the set of non-zero ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph (R) with the vertex set *(R) and two distinct vertices I₁ and I₂ are adjacent if and only if I₁I₂ = (0). In this paper, we examine the presence of cut vertices and cut sets in the annihilating-ideal graph of a commutative Artinian ring and provide a partial classification of the rings in which they appear. Using this, we obtain the vertex connectivity of some annihilating-ideal graphs.
Keywords: annihilating-ideal graph, local ring, nilpotency, cut vertex
@article{DMGAA_2015_35_2_a5,
     author = {Chelvam, T. and Selvakumar, K.},
     title = {On the connectivity of the annihilating-ideal graphs},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {195--204},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/}
}
TY  - JOUR
AU  - Chelvam, T.
AU  - Selvakumar, K.
TI  - On the connectivity of the annihilating-ideal graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 195
EP  - 204
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/
LA  - en
ID  - DMGAA_2015_35_2_a5
ER  - 
%0 Journal Article
%A Chelvam, T.
%A Selvakumar, K.
%T On the connectivity of the annihilating-ideal graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 195-204
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/
%G en
%F DMGAA_2015_35_2_a5
Chelvam, T.; Selvakumar, K. On the connectivity of the annihilating-ideal graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 195-204. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/

[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: doi:10.1006/jabr.1998.7840

[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company (1969).

[3] M. Axtell, N. Baeth and J. Stickles, Cut vertices in zero-divisor graph of finite commutative rings, Comm. Algebra 39 (2011), 2179-2188. doi: 10.1080/00927872.2010.488681

[4] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (4) (2011), 727-739. doi: 10.1142/S0219498811004896

[5] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), 741-753. doi: 10.1142/S0219498811004902

[6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth and Brooks/Cole, Monterey, CA (1986).

[7] B. Cote, C. Ewing, M. Huhn, C.M. Plaut and D. Weber, Cut sets in zero-divisor graphs of finite commutative rings, Comm. Algebra 39 (2011), 2849-2861. doi: 10.1080/00927872.2010.489534

[8] I. Kaplansky, Commutative Rings, rev. ed. University of Chicago Press Chicago (1974).

[9] S.P. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra 34 (2006), 2389-2401. doi: 10.1080/00927870600649103

[10] T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput. 88 (2014), 277-288.

[11] A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam (1973).