On the connectivity of the annihilating-ideal graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 195-204

Voir la notice de l'article provenant de la source Library of Science

Let R be a commutative ring with identity and *(R) the set of non-zero ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph (R) with the vertex set *(R) and two distinct vertices I₁ and I₂ are adjacent if and only if I₁I₂ = (0). In this paper, we examine the presence of cut vertices and cut sets in the annihilating-ideal graph of a commutative Artinian ring and provide a partial classification of the rings in which they appear. Using this, we obtain the vertex connectivity of some annihilating-ideal graphs.
Keywords: annihilating-ideal graph, local ring, nilpotency, cut vertex
@article{DMGAA_2015_35_2_a5,
     author = {Chelvam, T. and Selvakumar, K.},
     title = {On the connectivity of the annihilating-ideal graphs},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {195--204},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/}
}
TY  - JOUR
AU  - Chelvam, T.
AU  - Selvakumar, K.
TI  - On the connectivity of the annihilating-ideal graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 195
EP  - 204
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/
LA  - en
ID  - DMGAA_2015_35_2_a5
ER  - 
%0 Journal Article
%A Chelvam, T.
%A Selvakumar, K.
%T On the connectivity of the annihilating-ideal graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 195-204
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/
%G en
%F DMGAA_2015_35_2_a5
Chelvam, T.; Selvakumar, K. On the connectivity of the annihilating-ideal graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 195-204. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a5/