Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2015_35_2_a3, author = {Gupta, Raibatak and Sen, M. and Ghosh, Shamik}, title = {A variation of zero-divisor graphs}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {159--176}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a3/} }
TY - JOUR AU - Gupta, Raibatak AU - Sen, M. AU - Ghosh, Shamik TI - A variation of zero-divisor graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2015 SP - 159 EP - 176 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a3/ LA - en ID - DMGAA_2015_35_2_a3 ER -
Gupta, Raibatak; Sen, M.; Ghosh, Shamik. A variation of zero-divisor graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 159-176. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a3/
[1] D.D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514. doi: 10.1006/jabr.1993.1171
[2] D.F. Anderson, M.C. Axtell and J.A. Stickles Jr., Zero-divisor graphs in commutative rings, Commutative Algebra: Noetherian and Non-Noetherian Perspectives (2011), 23-45. doi: 10.1007/978-1-4419-6990-3_2
[3] D.F. Anderson and P. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840
[4] D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero-divisor graph of a commutative ring II, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York 220 (2001), 61-72.
[5] N. Ashrafi, H.R. Maimani, M.R. Pournaki and S. Yassemi, Unit graphs associated with rings, Comm. Algebra 38 (2010), 2851-2871. doi: 10.1080/00927870903095574
[6] S.E. Atani, M.S. Kohan and Z.E. Sarvandi, An ideal-based zero-divisor graph of direct products of commutative rings, Discuss. Math. Gen. Algebra Appl. 34 (2014), 45-53. doi: 10.7151/dmgaa.1211
[7] M. Axtell, J. Stickles and W. Trampbachls, Zero-divisor ideals and realizable zero-divisor graphs, Involve 2 (2009), 17-27. doi: 10.2140/involve.2009.2.17
[8] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226. doi: 10.1016/0021-8693(88)90202-5
[9] I. Bozic and Z. Petrovic, Zero-divisor graphs of matrices over commutative rings, Comm. Algebra 37 (2009), 1186-1192. doi: 10.1080/00927870802465951
[10] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Annalen 157 (3) (1964), 215-218. doi: 10.1007/BF01362435
[11] S. Redmond, The zero-divisor graph of a non-commutative ring, International Journal of Commutative Rings 1 (4) (2002), 203-211.
[12] D.B. West, Introduction to Graph Theory (Prentice Hall of India New Delhi, 2003).