A variation of zero-divisor graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 159-176
Voir la notice de l'article provenant de la source Library of Science
In this paper, we define a new graph for a ring with unity by extending the definition of the usual 'zero-divisor graph'. For a ring R with unity, Γ₁(R) is defined to be the simple undirected graph having all non-zero elements of R as its vertices and two distinct vertices x,y are adjacent if and only if either xy=0 or yx=0 or x+y is a unit. We consider the conditions of connectedness and show that for a finite commutative ring R with unity, Γ₁(R) is connected if and only if R is not isomorphic to ℤ₃ or ℤ₂^k (for any k ∈ ℕ-1. Then we characterize the rings R for which Γ₁(R) realizes some well-known classes of graphs, viz., complete graphs, star graphs, paths (i.e., P_n), or cycles (i.e., C_n). We then look at different graph-theoretical properties of the graph Γ₁(F), where F is a finite field. We also find all possible Γ₁(R) graphs with at most 6 vertices.
Keywords:
rings, zero-divisor graphs, finite fields
@article{DMGAA_2015_35_2_a3,
author = {Gupta, Raibatak and Sen, M. and Ghosh, Shamik},
title = {A variation of zero-divisor graphs},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {159--176},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a3/}
}
TY - JOUR AU - Gupta, Raibatak AU - Sen, M. AU - Ghosh, Shamik TI - A variation of zero-divisor graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2015 SP - 159 EP - 176 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a3/ LA - en ID - DMGAA_2015_35_2_a3 ER -
Gupta, Raibatak; Sen, M.; Ghosh, Shamik. A variation of zero-divisor graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 159-176. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a3/