On the length of rational continued fractions over $_q(X)$
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 131-137

Voir la notice de l'article provenant de la source Library of Science

Let _q be a finite field and A(Y) ∈ _q(X,Y). The aim of this paper is to prove that the length of the continued fraction expansion of A(P);P ∈ _q[X], is bounded.
Keywords: continued fraction, formal power series, finite field
@article{DMGAA_2015_35_2_a1,
     author = {Driss, S.},
     title = {On the length of rational continued fractions over $_q(X)$},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {131--137},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/}
}
TY  - JOUR
AU  - Driss, S.
TI  - On the length of rational continued fractions over $_q(X)$
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 131
EP  - 137
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/
LA  - en
ID  - DMGAA_2015_35_2_a1
ER  - 
%0 Journal Article
%A Driss, S.
%T On the length of rational continued fractions over $_q(X)$
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 131-137
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/
%G en
%F DMGAA_2015_35_2_a1
Driss, S. On the length of rational continued fractions over $_q(X)$. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 131-137. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/