On the length of rational continued fractions over $_q(X)$
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 131-137
Voir la notice de l'article provenant de la source Library of Science
Let _q be a finite field and A(Y) ∈ _q(X,Y). The aim of this paper is to prove that the length of the continued fraction expansion of A(P);P ∈ _q[X], is bounded.
Keywords:
continued fraction, formal power series, finite field
@article{DMGAA_2015_35_2_a1,
author = {Driss, S.},
title = {On the length of rational continued fractions over $_q(X)$},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {131--137},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/}
}
TY - JOUR AU - Driss, S. TI - On the length of rational continued fractions over $_q(X)$ JO - Discussiones Mathematicae. General Algebra and Applications PY - 2015 SP - 131 EP - 137 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/ LA - en ID - DMGAA_2015_35_2_a1 ER -
Driss, S. On the length of rational continued fractions over $_q(X)$. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 131-137. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/