On the length of rational continued fractions over $_q(X)$
Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 131-137.

Voir la notice de l'article provenant de la source Library of Science

Let _q be a finite field and A(Y) ∈ _q(X,Y). The aim of this paper is to prove that the length of the continued fraction expansion of A(P);P ∈ _q[X], is bounded.
Keywords: continued fraction, formal power series, finite field
@article{DMGAA_2015_35_2_a1,
     author = {Driss, S.},
     title = {On the length of rational continued fractions over $_q(X)$},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {131--137},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/}
}
TY  - JOUR
AU  - Driss, S.
TI  - On the length of rational continued fractions over $_q(X)$
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2015
SP  - 131
EP  - 137
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/
LA  - en
ID  - DMGAA_2015_35_2_a1
ER  - 
%0 Journal Article
%A Driss, S.
%T On the length of rational continued fractions over $_q(X)$
%J Discussiones Mathematicae. General Algebra and Applications
%D 2015
%P 131-137
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/
%G en
%F DMGAA_2015_35_2_a1
Driss, S. On the length of rational continued fractions over $_q(X)$. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 2, pp. 131-137. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_2_a1/

[1] J.P. Allouche, Sur le développement en fraction continue de certaines séries formelles, C.R. Acad. Sciences 307 (1988), 631-633.

[2] G. Grisel, Length of the Powers of a Rational Fraction, J. Number Theory 62 (1997), 322-337.

[3] G. Choquet, Répartition des nombres $k(3/2)^n$ et ensembles associés, (English summary) C.R. Acad. Sci. Paris Sér. A-B 290 13 (1980), 575-580.

[4] M. Hbaib and M. Jellali, On the quadratic continued fractions over $F_q(X)$, Communications in Algebra 38 (2010), 3181-3186.

[5] A. Lasjaunias, Diophantine approximation and continued fraction expansions of algebraic power series in positive characteristic, J. Number Theory 65 (1997), 206-225.

[6] M. Mendés France, Fractions continues limitées et théorie des languages, Séminaire Delange-Pisot-poitou. Théorie des nombres, 16 (1) (1971-1972), exp. no.9, 1-5.

[7] M. Mendées France, Quelques problémes relatifs à la théorie des fractions continues limitées, Séminaire Delange-Pisot-poitou. Théorie des nombres 13 (1) (1971-1972), exp. no.2, 1-6.

[8] M. Mendés France, Remarks and problems on finite and periodic continued fractions, Enseign. Math. 39 (1993), 249-257.

[9] M. Mendés France, Sur les fractions continues limités, Acta Arith. 23 (1973), 207-215.

[10] J. Mikusinski, Sur certaines fractions continues finies, Ann. Polon. Math. (1954), 203-206.

[11] M. Mkaouar, Quelques propriétés métriques des fractions continues dans un corps fini, Soc. Math. Tunisie (1996), 120-130.

[12] M. Mkaouar, Sur le développement en fraction continue des séries formelles quadratiques sur $F_q(X)$, Acta Arith. XCII. 3 (2001), 241-251.