Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2015_35_1_a8, author = {Koprowski, Przemys{\l}aw}, title = {Graded {Hilbert-symbol} equivalence of number fields}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {105--113}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a8/} }
TY - JOUR AU - Koprowski, Przemysław TI - Graded Hilbert-symbol equivalence of number fields JO - Discussiones Mathematicae. General Algebra and Applications PY - 2015 SP - 105 EP - 113 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a8/ LA - en ID - DMGAA_2015_35_1_a8 ER -
Koprowski, Przemysław. Graded Hilbert-symbol equivalence of number fields. Discussiones Mathematicae. General Algebra and Applications, Tome 35 (2015) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/DMGAA_2015_35_1_a8/
[1] P.E. Conner, R. Perlis and K. Szymiczek, Wild sets and 2-ranks of class groups, Acta Arith. 79 (1) (1997) 83-91.
[2] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1) (1991) 27-46.
[3] A. Czogała, Higher degree tame Hilbert-symbol equivalence of number fields, Abh. Math. Sem. Univ. Hamburg 69 (1999) 175-185. doi: 10.1007/BF02940871
[4] A. Czogała, Równoważność Hilberta ciał globalnych, volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001.
[5] A. Czogała and B. Rothkegel, Wild primes of a self-equivalence of a number field, Acta Arith. 166 (4) (2014) 335-348. doi: 10.4064/aa166-4-2
[6] A. Czogała and A. Sładek, Higher degree Hilbert-symbol equivalence of number fields, Tatra Mt. Math. Publ. 11 (1997) 77-88. Number theory (Liptovský Ján, 1995).
[7] A. Czogała and A. Sładek, Higher degree Hilbert symbol equivalence of algebraic number fields, II, J. Number Theory 72 (2) (1998) 363-376. doi: 10.1006/jnth.1998.2266
[8] D.K. Harrison, Witt Rings, Lecture notes, Department of Mathematics, University of Kentucky (Lexington, Kentucky, 1970).
[9] P. Koprowski, Graded quaternion symbol equivalence of function fields, Czechoslovak Math. J. 57 (132) (4) (2007), 1311-1319. doi: 10.1007/s10587-007-0125-x
[10] T.Y. Lam, Introduction to Quadratic Forms Over Fields, volume 67 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2005.
[11] T.C. Palfrey, Density Theorems for Reciprocity Equivalences, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)-Louisiana State University and Agricultural Mechanical College.
[12] R. Perlis, K. Szymiczek, P.E. Conner and R. Litherland, Matching Witts with global fields, in: Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365-387. Amer. Math. Soc., Providence, RI, 1994.
[13] A. Sładek, Higher degree Harrison equivalence and Milnor K-functor, in: Proceedings of the 13th Czech and Slovak International Conference on Number Theory (Ostravice, 1997), 6 (1998) 183-190.
[14] M. Somodi, On the size of the wild set, Canad. J. Math. 57 (1) (2005) 180-203. doi: 10.4153/CJM-2005-008-6
[15] M. Somodi, A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (4) (2006) 327-334. doi: 10.4064/aa121-4-3
[16] K. Szymiczek, Matching Witts locally and globally, Math. Slovaca 41 (3) (1991) 315-330.
[17] K. Szymiczek, Witt equivalence of global fields, Comm. Algebra 19 (4) (1991) 1125-1149.
[18] K. Szymiczek, Quadratic forms, in: Handbook of algebra, Vol. 6, pages 35-80 (Elsevier/North-Holland, Amsterdam, 2009). doi: 10.1016/S1570-7954(08)00202-7