Sublattices corresponding to very true operators in commutative basic algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 183-189
Cet article a éte moissonné depuis la source Library of Science
We introduce the concept of very true operator on a commutative basic algebra in a way analogous to that for fuzzy logics. We are motivated by the fact that commutative basic algebras form an algebraic axiomatization of certain non-associative fuzzy logics. We prove that every such operator is fully determined by a certain relatively complete sublattice provided its idempotency is assumed.
Keywords:
commutative basic algebra, very true operator, idempotent operator, relatively complete sublattice
@article{DMGAA_2014_34_2_a3,
author = {Chajda, Ivan and \v{S}vr\v{c}ek, Filip},
title = {Sublattices corresponding to very true operators in commutative basic algebras},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {183--189},
year = {2014},
volume = {34},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/}
}
TY - JOUR AU - Chajda, Ivan AU - Švrček, Filip TI - Sublattices corresponding to very true operators in commutative basic algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2014 SP - 183 EP - 189 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/ LA - en ID - DMGAA_2014_34_2_a3 ER -
%0 Journal Article %A Chajda, Ivan %A Švrček, Filip %T Sublattices corresponding to very true operators in commutative basic algebras %J Discussiones Mathematicae. General Algebra and Applications %D 2014 %P 183-189 %V 34 %N 2 %U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/ %G en %F DMGAA_2014_34_2_a3
Chajda, Ivan; Švrček, Filip. Sublattices corresponding to very true operators in commutative basic algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 183-189. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/
[1] M. Botur and F. Švrček, Very true on CBA fuzzy logic, Math. Slovaca 60 (2010) 435-446. doi: 10.2478/s12175-010-0023-9.
[2] M. Botur, I. Chajda and R. Halaš, Are basic algebras residuated lattices?, Soft Comp. 14 (2010) 251-255. doi: 10.1007/s00500-009-0399-z.
[3] I. Chajda, R. Halaš and J. Kühr, Distributive lattices with sectionally antitone involutions, Acta Sci. Math. (Szeged) 71 (2005) 19-33.
[4] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures (Heldermann Verlag (Lemgo, Germany), 2007).
[5] P. Hájek, On very true, Fuzzy Sets and Systems 124 (2001) 329-333.
[6] L.A. Zadeh, A fuzzy-set-theoretical interpretation of linguistic hedges, J. Cybern. 2 (1972) 4-34.