Sublattices corresponding to very true operators in commutative basic algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 183-189.

Voir la notice de l'article provenant de la source Library of Science

We introduce the concept of very true operator on a commutative basic algebra in a way analogous to that for fuzzy logics. We are motivated by the fact that commutative basic algebras form an algebraic axiomatization of certain non-associative fuzzy logics. We prove that every such operator is fully determined by a certain relatively complete sublattice provided its idempotency is assumed.
Keywords: commutative basic algebra, very true operator, idempotent operator, relatively complete sublattice
@article{DMGAA_2014_34_2_a3,
     author = {Chajda, Ivan and \v{S}vr\v{c}ek, Filip},
     title = {Sublattices corresponding to very true operators in commutative basic algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {183--189},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Švrček, Filip
TI  - Sublattices corresponding to very true operators in commutative basic algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2014
SP  - 183
EP  - 189
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/
LA  - en
ID  - DMGAA_2014_34_2_a3
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Švrček, Filip
%T Sublattices corresponding to very true operators in commutative basic algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2014
%P 183-189
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/
%G en
%F DMGAA_2014_34_2_a3
Chajda, Ivan; Švrček, Filip. Sublattices corresponding to very true operators in commutative basic algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 2, pp. 183-189. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_2_a3/

[1] M. Botur and F. Švrček, Very true on CBA fuzzy logic, Math. Slovaca 60 (2010) 435-446. doi: 10.2478/s12175-010-0023-9.

[2] M. Botur, I. Chajda and R. Halaš, Are basic algebras residuated lattices?, Soft Comp. 14 (2010) 251-255. doi: 10.1007/s00500-009-0399-z.

[3] I. Chajda, R. Halaš and J. Kühr, Distributive lattices with sectionally antitone involutions, Acta Sci. Math. (Szeged) 71 (2005) 19-33.

[4] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures (Heldermann Verlag (Lemgo, Germany), 2007).

[5] P. Hájek, On very true, Fuzzy Sets and Systems 124 (2001) 329-333.

[6] L.A. Zadeh, A fuzzy-set-theoretical interpretation of linguistic hedges, J. Cybern. 2 (1972) 4-34.