An ideal-based zero-divisor graph of direct products of commutative rings
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 45-53.

Voir la notice de l'article provenant de la source Library of Science

In this paper, specifically, we look at the preservation of the diameter and girth of the zero-divisor graph with respect to an ideal of a commutative ring when extending to a finite direct product of commutative rings.
Keywords: zero-divisor graph, ideal-based, diameter, girth, finite direct product
@article{DMGAA_2014_34_1_a2,
     author = {Atani, S. and Kohan, M. and Sarvandi, Z.},
     title = {An ideal-based zero-divisor graph of direct products of commutative rings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a2/}
}
TY  - JOUR
AU  - Atani, S.
AU  - Kohan, M.
AU  - Sarvandi, Z.
TI  - An ideal-based zero-divisor graph of direct products of commutative rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2014
SP  - 45
EP  - 53
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a2/
LA  - en
ID  - DMGAA_2014_34_1_a2
ER  - 
%0 Journal Article
%A Atani, S.
%A Kohan, M.
%A Sarvandi, Z.
%T An ideal-based zero-divisor graph of direct products of commutative rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2014
%P 45-53
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a2/
%G en
%F DMGAA_2014_34_1_a2
Atani, S.; Kohan, M.; Sarvandi, Z. An ideal-based zero-divisor graph of direct products of commutative rings. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a2/

[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra. 217 (1999) 434-447. doi: 10.1006/jabr.1998.7840.

[2] M. Axtell, J. Stickles and J. Warfel, Zero-divisor graphs of direct products of commutative rings, Houston J. Math. 32 (2006) 985-994.

[3] D.F. Anderson, M.C. Axtell and J.A. Stickles Jr., Zero-divisor graphs in commutative rings in commutative Algebra-Noetherian and Non-Noetherian Perspectives (M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson, Eds), (Springer-Verlag, New York, 2011) 23-45. doi: 10.1007/978-1-4419-6990-3_2

[4] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092. doi: 10.1080/00927870802110888.

[5] I. Beck, Coloring of commutative rings, J. Algebra. 116 (1998) 208-226. doi: 10.1016/0021-8693(88)90202-5.

[6] S. Ebrahimi Atani and M. Shajari Kohan, On L-ideal-based L-zero-divisor graphs, Discuss. Math. Gen. Algebra Appl. 31 (2011) 127-145. doi: 10.7151/dmgaa.1178.

[7] S. Ebrahimi Atani and M. Shajari Kohan, L-zero-divisor graphs of direct products of L-commutative rings, Discuss. Math. Gen. Algebra Appl. 31 (2011) 159-174. doi: 10.7151/dmgaa.1180.

[8] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003) 4425-4443. doi: 10.1081/AGB-120022801.