Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct
Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 27-43.

Voir la notice de l'article provenant de la source Library of Science

Here we introduce the notion of strong quasi k-ideals of a semiring in SL⁺ and characterize the semirings that are distributive lattices of t-k-simple(t-k-Archimedean) subsemirings by their strong quasi k-ideals. A quasi k-ideal Q is strong if it is an intersection of a left k-ideal and a right k-ideal. A semiring S in SL⁺ is a distributive lattice of t-k-simple semirings if and only if every strong quasi k-ideal is a completely semiprime k-ideal of S. Again S is a distributive lattice of t-k-Archimedean semirings if and only if √Q is a k-ideal, for every strong quasi k-ideal Q of S.
Keywords: quasi k-ideal, strong quasi k-ideal, strong quasi k-simple, t-k-simple, t-k-Archimedean
@article{DMGAA_2014_34_1_a1,
     author = {Bhuniya, Anjan and Jana, Kanchan},
     title = {Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/}
}
TY  - JOUR
AU  - Bhuniya, Anjan
AU  - Jana, Kanchan
TI  - Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2014
SP  - 27
EP  - 43
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/
LA  - en
ID  - DMGAA_2014_34_1_a1
ER  - 
%0 Journal Article
%A Bhuniya, Anjan
%A Jana, Kanchan
%T Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct
%J Discussiones Mathematicae. General Algebra and Applications
%D 2014
%P 27-43
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/
%G en
%F DMGAA_2014_34_1_a1
Bhuniya, Anjan; Jana, Kanchan. Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/

[1] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. Gen. Alg. and Appl. 31 (2011) 5-23. doi: 10.7151/dmgaa.1172.

[2] C. Donges, On quasi ideals of semirings, Int. J. Math. and Math. Sci. 17(1) (1994) 47-58. doi: 10.1155/S0161171294000086.

[3] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with semilattice additive reduct, Semigroup Forum 80 (2010) 293-301. doi: 10.1007/s00233-009-9205-6.

[4] A.K. Bhuniya and T.K. Mondal, On the least distributive lattice congruence on semirings, communicated.

[5] S.M. Bogdanović, M.D. Ćirić, and Ž. Lj. Popović, Semilattice Decompositions of Semigroups (University of Niš, Faculty of Economics, 2011).

[6] M. Gondran, M. Minoux, Graphs, Dioids and Semirings. New Models and Algorithms (Springer, Berlin, 2008).

[7] M. Gondran and M. Minoux, Dioids and semirings: links to fuzzy sets and other applications, Fuzzy Sets and Systems 158 (2007) 1273-1294. doi: 10.1016/j.fss.2007.01.016.

[8] J. Gunawardena, Idempotency (Cambridge Univ. Press, 1998).

[9] U. Hebisch and H.J. Weinert, Semirings: Algebric Theory and Applications in Computer Science (World Scientific, Singapore, 1998).

[10] J.M. Howie, Fundamentals in Semigroup Theory (Clarendon Press, 1995).

[11] K. Jana, Quasi-k-ideals in k-regular and intra k-regular semirings, Pure Math. Appl. 22(1) (2011) 65-74.

[12] K. Jana, k-bi-ideals and quasi k-ideals in k-Clifford and left k-Clifford semirings, Southeast Asian Bull. Math. 37 (2013) 201-210.

[13] V.N. Kolokoltsov and V.P. Maslov, Idempotent Analysis and Its Applications (Kluwer Academic, Dordrecht, 1997).

[14] G.L. Litvinov and V.P. Maslov, The Correspondence principle for idempotent calculus and some computer applications, in: Idempotency, J. Gunawardena (Ed(s)), (Cambridge Univ. Press, Cambridge, 1998) 420-443.

[15] V.P. Maslov and S.N. Samborskiĭ, Idempotent Analysis (Advances in Soviet Mathematics, Vol. 13, Amer. Math. Soc., Providence RI, 1992).

[16] M. Mohri, Semiring frameworks and algorithms for shortest distance problems, J. Autom. Lang. Comb. 7 (2002) 321-350.

[17] T.K. Mondal, Distributive lattice of t-k-Archimedean semirings, Discuss. Math. Gen. Alg. and Appl. 31 (2011) 147-158. doi: 10.7151/dmgaa.1179.

[18] T.K. Mondal and A.K. Bhuniya, Semirings which are distributive lattices of t-k-simple semirings, communicated.

[19] M.K. Sen and A.K. Bhuniya, On additive idempotent k-regular semirings, Bull. Cal. Math. Soc. 93 (2001) 371-384.

[20] O. Steinfeld, Quasi-ideals in Rings and Regular Semigroups (Akademiai Kiado, Budapest, 1978).

[21] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920. doi: 10.1090/S0002-9904-1934-06003-8.

[22] H.J. Weinert, on quasi-ideals in rings, Acta Math. Hung. 43 (1984) 85-99. doi: 10.1007/BF01951330.