Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2014_34_1_a1, author = {Bhuniya, Anjan and Jana, Kanchan}, title = {Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {27--43}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/} }
TY - JOUR AU - Bhuniya, Anjan AU - Jana, Kanchan TI - Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct JO - Discussiones Mathematicae. General Algebra and Applications PY - 2014 SP - 27 EP - 43 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/ LA - en ID - DMGAA_2014_34_1_a1 ER -
%0 Journal Article %A Bhuniya, Anjan %A Jana, Kanchan %T Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct %J Discussiones Mathematicae. General Algebra and Applications %D 2014 %P 27-43 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/ %G en %F DMGAA_2014_34_1_a1
Bhuniya, Anjan; Jana, Kanchan. Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct. Discussiones Mathematicae. General Algebra and Applications, Tome 34 (2014) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/DMGAA_2014_34_1_a1/
[1] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. Gen. Alg. and Appl. 31 (2011) 5-23. doi: 10.7151/dmgaa.1172.
[2] C. Donges, On quasi ideals of semirings, Int. J. Math. and Math. Sci. 17(1) (1994) 47-58. doi: 10.1155/S0161171294000086.
[3] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with semilattice additive reduct, Semigroup Forum 80 (2010) 293-301. doi: 10.1007/s00233-009-9205-6.
[4] A.K. Bhuniya and T.K. Mondal, On the least distributive lattice congruence on semirings, communicated.
[5] S.M. Bogdanović, M.D. Ćirić, and Ž. Lj. Popović, Semilattice Decompositions of Semigroups (University of Niš, Faculty of Economics, 2011).
[6] M. Gondran, M. Minoux, Graphs, Dioids and Semirings. New Models and Algorithms (Springer, Berlin, 2008).
[7] M. Gondran and M. Minoux, Dioids and semirings: links to fuzzy sets and other applications, Fuzzy Sets and Systems 158 (2007) 1273-1294. doi: 10.1016/j.fss.2007.01.016.
[8] J. Gunawardena, Idempotency (Cambridge Univ. Press, 1998).
[9] U. Hebisch and H.J. Weinert, Semirings: Algebric Theory and Applications in Computer Science (World Scientific, Singapore, 1998).
[10] J.M. Howie, Fundamentals in Semigroup Theory (Clarendon Press, 1995).
[11] K. Jana, Quasi-k-ideals in k-regular and intra k-regular semirings, Pure Math. Appl. 22(1) (2011) 65-74.
[12] K. Jana, k-bi-ideals and quasi k-ideals in k-Clifford and left k-Clifford semirings, Southeast Asian Bull. Math. 37 (2013) 201-210.
[13] V.N. Kolokoltsov and V.P. Maslov, Idempotent Analysis and Its Applications (Kluwer Academic, Dordrecht, 1997).
[14] G.L. Litvinov and V.P. Maslov, The Correspondence principle for idempotent calculus and some computer applications, in: Idempotency, J. Gunawardena (Ed(s)), (Cambridge Univ. Press, Cambridge, 1998) 420-443.
[15] V.P. Maslov and S.N. Samborskiĭ, Idempotent Analysis (Advances in Soviet Mathematics, Vol. 13, Amer. Math. Soc., Providence RI, 1992).
[16] M. Mohri, Semiring frameworks and algorithms for shortest distance problems, J. Autom. Lang. Comb. 7 (2002) 321-350.
[17] T.K. Mondal, Distributive lattice of t-k-Archimedean semirings, Discuss. Math. Gen. Alg. and Appl. 31 (2011) 147-158. doi: 10.7151/dmgaa.1179.
[18] T.K. Mondal and A.K. Bhuniya, Semirings which are distributive lattices of t-k-simple semirings, communicated.
[19] M.K. Sen and A.K. Bhuniya, On additive idempotent k-regular semirings, Bull. Cal. Math. Soc. 93 (2001) 371-384.
[20] O. Steinfeld, Quasi-ideals in Rings and Regular Semigroups (Akademiai Kiado, Budapest, 1978).
[21] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920. doi: 10.1090/S0002-9904-1934-06003-8.
[22] H.J. Weinert, on quasi-ideals in rings, Acta Math. Hung. 43 (1984) 85-99. doi: 10.1007/BF01951330.