All completely regular elements in $Hyp_{G}(n)$
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 211-219

Voir la notice de l'article provenant de la source Library of Science

In Universal Algebra, identities are used to classify algebras into collections, called varieties and hyperidentities are use to classify varieties into collections, called hypervarities. The concept of a hypersubstitution is a tool to study hyperidentities and hypervarieties.
Keywords: generalized hypersubstitution, regular element, completely regular element
@article{DMGAA_2013_33_2_a6,
     author = {Boonmee, Ampika and Leeratanavalee, Sorasak},
     title = {All completely regular elements in $Hyp_{G}(n)$},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/}
}
TY  - JOUR
AU  - Boonmee, Ampika
AU  - Leeratanavalee, Sorasak
TI  - All completely regular elements in $Hyp_{G}(n)$
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 211
EP  - 219
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/
LA  - en
ID  - DMGAA_2013_33_2_a6
ER  - 
%0 Journal Article
%A Boonmee, Ampika
%A Leeratanavalee, Sorasak
%T All completely regular elements in $Hyp_{G}(n)$
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 211-219
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/
%G en
%F DMGAA_2013_33_2_a6
Boonmee, Ampika; Leeratanavalee, Sorasak. All completely regular elements in $Hyp_{G}(n)$. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 211-219. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/