All completely regular elements in $Hyp_{G}(n)$
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 211-219.

Voir la notice de l'article provenant de la source Library of Science

In Universal Algebra, identities are used to classify algebras into collections, called varieties and hyperidentities are use to classify varieties into collections, called hypervarities. The concept of a hypersubstitution is a tool to study hyperidentities and hypervarieties.
Keywords: generalized hypersubstitution, regular element, completely regular element
@article{DMGAA_2013_33_2_a6,
     author = {Boonmee, Ampika and Leeratanavalee, Sorasak},
     title = {All completely regular elements in $Hyp_{G}(n)$},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/}
}
TY  - JOUR
AU  - Boonmee, Ampika
AU  - Leeratanavalee, Sorasak
TI  - All completely regular elements in $Hyp_{G}(n)$
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 211
EP  - 219
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/
LA  - en
ID  - DMGAA_2013_33_2_a6
ER  - 
%0 Journal Article
%A Boonmee, Ampika
%A Leeratanavalee, Sorasak
%T All completely regular elements in $Hyp_{G}(n)$
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 211-219
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/
%G en
%F DMGAA_2013_33_2_a6
Boonmee, Ampika; Leeratanavalee, Sorasak. All completely regular elements in $Hyp_{G}(n)$. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 211-219. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a6/

[1] J. Aczèl, Proof of a theorem of distributive type hyperidentities, Algebra Universalis 1 (1971) 1-6.

[2] V.D. Belousov, System of quasigroups with generalized identities, Uspechi Mat. Nauk. 20 (1965) 75-146.

[3] A. Boonmee and S. Leeratanavalee, Factorisable of Generalized Hypersubstitutions of type τ=(2), Wulfenia Journal 20 (9) (2013) 245-258.

[4] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra 7, Verlag Hölder-Pichler-Tempsky, Wein (1991) 97-118.

[5] W. Puninagool and S. Leeratanavalee, The Monoid of Generalized Hypersubstitutions of type τ=(n), Discuss. Math. General Algebra and Applications 30 (2010) 173-191. doi: 10.7151/dmgaa.1168.

[6] J.M. Howie, Fundamentals of Semigroup Theory (Academic Press, London, 1995).

[7] M. Petrich and N.R. Reilly, Completely Regular Semigroups (John Wiley and Sons, Inc., New York, 1999).

[8] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of the '59 th Workshop on General Algebra', '15 th Conference for Young Algebraists Potsdam 2000', Shaker Verlag (2000) 135-145.

[9] W.D. Newmann, Mal'cev conditions, spectra and Kronecker product, J. Austral. Math. Soc (A) 25 (1987) 103-117.

[10] W. Taylor, Hyperidentities and hypervarieties, Aequationes Math. 23 (1981) 111-127.