Nil-extensions of completely simple semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 201-209.

Voir la notice de l'article provenant de la source Library of Science

A semiring S is said to be a quasi completely regular semiring if for any a ∈ S there exists a positive integer n such that na is completely regular. The present paper is devoted to the study of completely Archimedean semirings. We show that a semiring S is a completely Archimedean semiring if and only if it is a nil-extension of a completely simple semiring. This result extends the crucial structure theorem of completely Archimedean semigroup.
Keywords: ideal extension, nil-extension, bi-ideal, completely Archimedean semirings, completely simple semiring
@article{DMGAA_2013_33_2_a5,
     author = {Maity, Sunil and Ghosh, Rituparna},
     title = {Nil-extensions of completely simple semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {201--209},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a5/}
}
TY  - JOUR
AU  - Maity, Sunil
AU  - Ghosh, Rituparna
TI  - Nil-extensions of completely simple semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 201
EP  - 209
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a5/
LA  - en
ID  - DMGAA_2013_33_2_a5
ER  - 
%0 Journal Article
%A Maity, Sunil
%A Ghosh, Rituparna
%T Nil-extensions of completely simple semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 201-209
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a5/
%G en
%F DMGAA_2013_33_2_a5
Maity, Sunil; Ghosh, Rituparna. Nil-extensions of completely simple semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 201-209. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a5/

[1] S. Bogdanovic and S. Milic, A nil-extension of a completely simple semigroup, Publ. Inst. Math. 36 (50) (1984) 45-50.

[2] S. Bogdanovic, Semigroups with a System of Subsemigroups (Novi Sad, 1985).

[3] R. El Bashir, J. Hurt, A. Jancarik and T. Kepka, Simple commutative semirings, J. Algebra 236 (2001) 277-306. doi: 10.1006/jabr.2000.8483.

[4] J.S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science (Pitman Monographs and Surveys in Pure and Applied Mathematics 54, Longman Sci. Tech., Harlow, 1992).

[5] U. Hebisch and J.H. Weinert, Semirings, Algebraic Theory and Applications in Computer Science, Series in Algebra Vol. 5 (World Scientific Singapore, 1998).

[6] J. M. Howie, Introduction to the Theory of Semigroups (Academic Press, 1976).

[7] N. Kehayopulu and K.P. Shum, Ideal extensions of regular poe-semigroups, Int. Math. J. 3 (2003) 1267-1277.

[8] S.K. Maity, Congruences in additive inverse semirings, Southeast Asian Bull. Math. 30 (3) (2001) 473-484.

[9] S.K. Maity and R. Ghosh, On quasi Completely Regular Semirings, (Accepted for publication in Semigroup Forum).

[10] C. Monico, On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/j.jalgebra.2003.09.034.

[11] F. Pastijn and Y.Q. Guo, The lattice of idempotent distributive semiring varieties, Science in China (Series A) 42 (8) (1999) 785-804. doi: 10.1007/BF02884266

[12] F. Pastijn and X. Zhao, Varieties of idempotent semirings with commutative addition, Algebra Universalis 54 (3) (2005) 301-321. doi: 10.1007/s00012-005-1947-8

[13] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999).

[14] M.K. Sen, S.K. Maity and K.P. Shum, Clifford semirings and generalized Clifford semirings, Taiwanese J. Math. 9 (3) (2005) 433-444.

[15] M.K. Sen, S.K. Maity and K.P. Shum, On completely regular semirings, Bull. Cal. Math. Soc. 88 (2006) 319-328.

[16] X. Zhao, K.P. Shum and Y.Q. Guo, -subvarieties of the variety of idempotent semirings, Algebra Universalis 46 (1-2) (2001) 75-96. doi: 10.1007/PL00000348

[17] X. Zhao, Y.Q. Guo and K.P. Shum, -subvarieties of the variety of idempotent semirings, Algebra of Colloqium 9 (1) (2002) 15-28.