Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2013_33_2_a5, author = {Maity, Sunil and Ghosh, Rituparna}, title = {Nil-extensions of completely simple semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {201--209}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a5/} }
TY - JOUR AU - Maity, Sunil AU - Ghosh, Rituparna TI - Nil-extensions of completely simple semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2013 SP - 201 EP - 209 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a5/ LA - en ID - DMGAA_2013_33_2_a5 ER -
Maity, Sunil; Ghosh, Rituparna. Nil-extensions of completely simple semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 201-209. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a5/
[1] S. Bogdanovic and S. Milic, A nil-extension of a completely simple semigroup, Publ. Inst. Math. 36 (50) (1984) 45-50.
[2] S. Bogdanovic, Semigroups with a System of Subsemigroups (Novi Sad, 1985).
[3] R. El Bashir, J. Hurt, A. Jancarik and T. Kepka, Simple commutative semirings, J. Algebra 236 (2001) 277-306. doi: 10.1006/jabr.2000.8483.
[4] J.S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science (Pitman Monographs and Surveys in Pure and Applied Mathematics 54, Longman Sci. Tech., Harlow, 1992).
[5] U. Hebisch and J.H. Weinert, Semirings, Algebraic Theory and Applications in Computer Science, Series in Algebra Vol. 5 (World Scientific Singapore, 1998).
[6] J. M. Howie, Introduction to the Theory of Semigroups (Academic Press, 1976).
[7] N. Kehayopulu and K.P. Shum, Ideal extensions of regular poe-semigroups, Int. Math. J. 3 (2003) 1267-1277.
[8] S.K. Maity, Congruences in additive inverse semirings, Southeast Asian Bull. Math. 30 (3) (2001) 473-484.
[9] S.K. Maity and R. Ghosh, On quasi Completely Regular Semirings, (Accepted for publication in Semigroup Forum).
[10] C. Monico, On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/j.jalgebra.2003.09.034.
[11] F. Pastijn and Y.Q. Guo, The lattice of idempotent distributive semiring varieties, Science in China (Series A) 42 (8) (1999) 785-804. doi: 10.1007/BF02884266
[12] F. Pastijn and X. Zhao, Varieties of idempotent semirings with commutative addition, Algebra Universalis 54 (3) (2005) 301-321. doi: 10.1007/s00012-005-1947-8
[13] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999).
[14] M.K. Sen, S.K. Maity and K.P. Shum, Clifford semirings and generalized Clifford semirings, Taiwanese J. Math. 9 (3) (2005) 433-444.
[15] M.K. Sen, S.K. Maity and K.P. Shum, On completely regular semirings, Bull. Cal. Math. Soc. 88 (2006) 319-328.
[16] X. Zhao, K.P. Shum and Y.Q. Guo, -subvarieties of the variety of idempotent semirings, Algebra Universalis 46 (1-2) (2001) 75-96. doi: 10.1007/PL00000348
[17] X. Zhao, Y.Q. Guo and K.P. Shum, -subvarieties of the variety of idempotent semirings, Algebra of Colloqium 9 (1) (2002) 15-28.