On rational radii coin representations of the wheel graph
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 167-199
Voir la notice de l'article provenant de la source Library of Science
A flower is a coin graph representation of the wheel graph. A petal of a flower is an outer coin connected to the center coin. The results of this paper are twofold. First we derive a parametrization of all the rational (and hence integer) radii coins of the 3-petal flower, also known as Apollonian circles or Soddy circles. Secondly we consider a general n-petal flower and show there is a unique irreducible polynomial Pₙ in n variables over the rationals ℚ, the affine variety of which contains the cosinus of the internal angles formed by the center coin and two consecutive petals of the flower. In that process we also derive a recursion that these irreducible polynomials satisfy.
Keywords:
planar graph, coin graph, flower, polynomial ring, Galois theory
@article{DMGAA_2013_33_2_a4,
author = {Agnarsson, Geir and Dunham, Jill},
title = {On rational radii coin representations of the wheel graph},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {167--199},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/}
}
TY - JOUR AU - Agnarsson, Geir AU - Dunham, Jill TI - On rational radii coin representations of the wheel graph JO - Discussiones Mathematicae. General Algebra and Applications PY - 2013 SP - 167 EP - 199 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/ LA - en ID - DMGAA_2013_33_2_a4 ER -
%0 Journal Article %A Agnarsson, Geir %A Dunham, Jill %T On rational radii coin representations of the wheel graph %J Discussiones Mathematicae. General Algebra and Applications %D 2013 %P 167-199 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/ %G en %F DMGAA_2013_33_2_a4
Agnarsson, Geir; Dunham, Jill. On rational radii coin representations of the wheel graph. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 167-199. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/