Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2013_33_2_a4, author = {Agnarsson, Geir and Dunham, Jill}, title = {On rational radii coin representations of the wheel graph}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {167--199}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/} }
TY - JOUR AU - Agnarsson, Geir AU - Dunham, Jill TI - On rational radii coin representations of the wheel graph JO - Discussiones Mathematicae. General Algebra and Applications PY - 2013 SP - 167 EP - 199 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/ LA - en ID - DMGAA_2013_33_2_a4 ER -
%0 Journal Article %A Agnarsson, Geir %A Dunham, Jill %T On rational radii coin representations of the wheel graph %J Discussiones Mathematicae. General Algebra and Applications %D 2013 %P 167-199 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/ %G en %F DMGAA_2013_33_2_a4
Agnarsson, Geir; Dunham, Jill. On rational radii coin representations of the wheel graph. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 167-199. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a4/
[1] E.M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Matematicheskiĭ Sbornik. Novaya Seriya 81 (123) (1970) 445-478.
[2] D. Austin, When Kissing Involves Trigonometry, AMS Features Column 9 (1999).
[3] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005.
[4] G.R. Brightwell and E.R. Scheinerman, Representations of planar graphs, SIAM J. Discrete Math. 6 (1993) 214-229. doi: 10.1137/0406017
[5] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: number theory, J. Number Theory 100 (2003) 1-45. doi: 10.1016/S0022-314X(03)00015-5
[6] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. I. The Apollonian group, Discrete Comput. Geom. 34 (4) (2005) 547-585. doi: 10.1007/s00454-005-1196-9
[7] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. II. Super-Apollonian group and integral packings, Discrete Comput. Geom. 35 (1) (2006) 1-36. doi: 10.1007/s00454-005-1195-x
[8] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. III. Higher dimensions, Discrete Comput. Geom. 35 (1) (2006) 37-72. doi: 10.1007/s00454-005-1197-8
[9] E. Fuchs and K. Sanden, Some experiments with integral Apollonian circle packings, Exp. Math. 20 (4) (2011) 380-399. doi: 10.1080/10586458.2011.565255
[10] T. Hungerford, Algebra, Graduate Texts in Mathematics, GTM-73 Springer-Verlag, 1974.
[11] P. Koebe, Kontaktprobleme der konformen Abbildung, Ber. Verh. Sächs, Akademie der Wissenshaften Leipzig, Math.-Phys. Klasse 88 (1936) 141-164.
[12] MAPLE, mathematics software tool for symbolic computation, http://www.maplesoft.com/products/Maple/academic/index.aspx
[13] K.H. Rosen, Elementary Number Theory and Its Applications, Pearson Addison Wesley, 2005.
[14] K. Stephenson, Introduction to Circle Packing: The Theory of Discrete Analytic Functions, Cambridge University Press, 2005.
[15] W. Thurston, Three-Dimensional Geometry and Topology, Princeton University Press, 1997.
[16] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, GMT-152 Springer Verlag, 1995. doi: 10.1007/978-1-4613-8431-1