Clifford congruences on generalized quasi-orthodox GV-semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 137-145.

Voir la notice de l'article provenant de la source Library of Science

A semigroup S is said to be completely π-regular if for any a ∈ S there exists a positive integer n such that aⁿ is completely regular. A completely π-regular semigroup S is said to be a GV-semigroup if all the regular elements of S are completely regular. The present paper is devoted to the study of generalized quasi-orthodox GV-semigroups and least Clifford congruences on them.
Keywords: Clifford semigroup, Clifford congruence, generalized quasi-orthodox semigroup
@article{DMGAA_2013_33_2_a2,
     author = {Maity, Sunil},
     title = {Clifford congruences on generalized quasi-orthodox {GV-semigroups}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {137--145},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a2/}
}
TY  - JOUR
AU  - Maity, Sunil
TI  - Clifford congruences on generalized quasi-orthodox GV-semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 137
EP  - 145
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a2/
LA  - en
ID  - DMGAA_2013_33_2_a2
ER  - 
%0 Journal Article
%A Maity, Sunil
%T Clifford congruences on generalized quasi-orthodox GV-semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 137-145
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a2/
%G en
%F DMGAA_2013_33_2_a2
Maity, Sunil. Clifford congruences on generalized quasi-orthodox GV-semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 2, pp. 137-145. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_2_a2/

[1] S. Bogdanovic, Semigroups with a System of Subsemigroups (Novi Sad, 1985).

[2] S. Bogdanovic and M. Ciric, Retractive nil-extensions of bands of groups, Facta Universitatis 8 (1993) 11-20.

[3] T.E. Hall, On regular semigroups, J. Algebra 24 (1973) 1-24. doi: 10.1016/0021-8693(73)90150-6.

[4] J.M. Howie, Introduction to the Theory of Semigroups (Academic Press, 1976).

[5] D.R. LaTorre, Group congruences on regular semigroups, Semigroup Forum 24 (1982) 327-340. doi: 10.1007/BF02572776.

[6] P.M. Edwards, Eventually regular semigroups, Bull. Austral. Math. Soc 28 (1982) 23-38. doi: 10.1017/S0004972700026095.

[7] W.D. Munn, Pseudo-inverses in semigroups, Proc. Camb. Phil. Soc. 57 (1961) 247-250. doi: 10.1017/S0305004100035143.

[8] M. Petrich, Regular semigroups which are subdirect products of a band and a semilattice of groups, Glasgow Math. J. 14 (1973) 27-49. doi: 10.1017/S0017089500001701.

[9] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999).

[10] S.H. Rao and P. Lakshmi, Group congruences on eventually regular semigroups, J. Austral. Math. Soc. (Series A) 45 (1988) 320-325. doi: 10.1017/S1446788700031025.

[11] S. Sattayaporn, The least group congruences on eventually regular semigroups, Int. J. Algebra 4 (2010) 327-334.