The inertia of unicyclic graphs and bicyclic graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 109-115.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic graphs, Linear Algebra and its Applications, 431 (2009), 1293-1301.] proved if G is a unicyclic graph, then η(G) equals n - 2ν(G) - 1, n-2ν(G) or n - 2ν(G) + 2. Barrett et al. determined the inertia sets for trees and graphs with cut vertices. In this paper, we give the nullity of bicyclic graphs ₙ⁺⁺. Furthermore, we determine the inertia set in unicyclic graphs and ₙ⁺⁺, respectively.
Keywords: matching number, inertia, nullity, unicyclic graph, bicyclic graph
@article{DMGAA_2013_33_1_a7,
     author = {Liu, Ying},
     title = {The inertia of unicyclic graphs and bicyclic graphs},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {109--115},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a7/}
}
TY  - JOUR
AU  - Liu, Ying
TI  - The inertia of unicyclic graphs and bicyclic graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 109
EP  - 115
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a7/
LA  - en
ID  - DMGAA_2013_33_1_a7
ER  - 
%0 Journal Article
%A Liu, Ying
%T The inertia of unicyclic graphs and bicyclic graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 109-115
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a7/
%G en
%F DMGAA_2013_33_1_a7
Liu, Ying. The inertia of unicyclic graphs and bicyclic graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 109-115. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a7/

[1] W. Barrett, H. Tracy Hall and R. Loewy, The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample, Linear Algebra and its Applications 431 (2009) 1147-1191. doi: 10.1016/j.laa.2009.04.007.

[2] D. Cvetkociić, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application (Academic Press, New York, 1980).

[3] D. Cvetkocić, I. Gutman and N. Trinajstić, Graph theory and molecular orbitals II, Croat.Chem. Acta 44 (1972) 365-374.

[4] S. Fiorini, I. Gutman and I. Sciriha, Trees with maximum nullity, Linear Algebra and its Applications 397 (2005) 245-252. doi: 10.1016/j.laa.2004.10.024.

[5] Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh, On the nullity and the matching number of unicyclic graphs, Linear Algebra and its Applications 431 (2009) 1293-1301. doi: 10.1016/j.laa.2009.04.026.

[6] Shengbiao Hu, Tan Xuezhong and Bolian Liu, On the nullity of bicyclic graphs, Linear Algebra and its Applications 429 (2008) 1387-1391. doi: 10.1016/j.laa.2007.12.007.