Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2013_33_1_a7, author = {Liu, Ying}, title = {The inertia of unicyclic graphs and bicyclic graphs}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {109--115}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a7/} }
Liu, Ying. The inertia of unicyclic graphs and bicyclic graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 109-115. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a7/
[1] W. Barrett, H. Tracy Hall and R. Loewy, The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample, Linear Algebra and its Applications 431 (2009) 1147-1191. doi: 10.1016/j.laa.2009.04.007.
[2] D. Cvetkociić, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application (Academic Press, New York, 1980).
[3] D. Cvetkocić, I. Gutman and N. Trinajstić, Graph theory and molecular orbitals II, Croat.Chem. Acta 44 (1972) 365-374.
[4] S. Fiorini, I. Gutman and I. Sciriha, Trees with maximum nullity, Linear Algebra and its Applications 397 (2005) 245-252. doi: 10.1016/j.laa.2004.10.024.
[5] Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh, On the nullity and the matching number of unicyclic graphs, Linear Algebra and its Applications 431 (2009) 1293-1301. doi: 10.1016/j.laa.2009.04.026.
[6] Shengbiao Hu, Tan Xuezhong and Bolian Liu, On the nullity of bicyclic graphs, Linear Algebra and its Applications 429 (2008) 1387-1391. doi: 10.1016/j.laa.2007.12.007.