The exocenter and type decomposition of a generalized pseudoeffect algebra
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 13-47

Voir la notice de l'article provenant de la source Library of Science

We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend the notion of central orthocompleteness to GPEA, prove that the exocenter of a centrally orthocomplete GPEA (COGPEA) is a complete boolean algebra and show that the sublattice corresponding to the center is a complete boolean subalgebra. We also show that in a COGPEA, every element admits an exocentral cover and that the family of all exocentral covers, the so-called exocentral cover system, has the properties of a hull system on a generalized effect algebra. We extend the notion of type determining (TD) sets, originally introduced for effect algebras and then extended to GEAs and PEAs, to GPEAs, and prove a type-decomposition theorem, analogous to the type decomposition of von Neumann algebras.
Keywords: pseudoeffect algebra, generalized pseudoeffect algebra, center, exocenter, central orthocompleteness, type determining set, type decomposition
@article{DMGAA_2013_33_1_a1,
     author = {Foulis, David and Pulmannov\'a, Silvia and Vincekov\'a, Elena},
     title = {The exocenter and type decomposition of a generalized pseudoeffect algebra},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {13--47},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a1/}
}
TY  - JOUR
AU  - Foulis, David
AU  - Pulmannová, Silvia
AU  - Vinceková, Elena
TI  - The exocenter and type decomposition of a generalized pseudoeffect algebra
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 13
EP  - 47
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a1/
LA  - en
ID  - DMGAA_2013_33_1_a1
ER  - 
%0 Journal Article
%A Foulis, David
%A Pulmannová, Silvia
%A Vinceková, Elena
%T The exocenter and type decomposition of a generalized pseudoeffect algebra
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 13-47
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a1/
%G en
%F DMGAA_2013_33_1_a1
Foulis, David; Pulmannová, Silvia; Vinceková, Elena. The exocenter and type decomposition of a generalized pseudoeffect algebra. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 13-47. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a1/