Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2013_33_1_a0, author = {Maity, Sunil}, title = {Congruences on bands of \ensuremath{\pi}-groups}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--11}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a0/} }
Maity, Sunil. Congruences on bands of π-groups. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a0/
[1] S. Bogdanovic, Semigroups with a System of Subsemigroups (Novi Sad, 1985).
[2] S. Bogdanovic and M. Ciric, Retractive Nil-extensions of Bands of Groups, Facta Universitatis 8 (1993) 11-20.
[3] T.E. Hall, On Regular Semigroups, J. Algebra 24 (1973) 1-24. doi: 10.1016/0021-8693(73)90150-6.
[4] J.M. Howie, Introduction to the theory of semigroups (Academic Press, 1976).
[5] D.R. LaTorre, Group Congruences on Regular semigroups, Semigroup Forum 24 (1982) 327-340. doi: 10.1007/BF02572776.
[6] P.M. Edwards, Eventually Regular Semigroups, Bull. Austral. Math. Soc 28 (1982) 23-38. doi: 10.1017/S0004972700026095.
[7] W.D. Munn, Pseudo-inverses in Semigroups, Proc. Camb. Phil. Soc. 57 (1961) 247-250. doi: 10.1017/S0305004100035143.
[8] M. Petrich, Regular Semigroups which are subdirect products of a band and a semilattice of groups, Glasgow Math. J. 14 (1973) 27-49. doi: 10.1017/S0017089500001701.
[9] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999).
[10] S.H. Rao and P. Lakshmi, Group Congruences on Eventually Regular Semigroups, J. Austral. Math. Soc. (Series A) 45 (1988) 320-325. doi: 10.1017/S1446788700031025.
[11] S. Sattayaporn, The Least Group Congruences On Eventually Regular Semigroups, International Journal of Algebra 4 (2010) 327-334.
[12] J. Zeleznekow, Regular semirings, Semigroup Forum 23 (1981) 119-136. doi: 10.1007/BF02676640.