Congruences on bands of π-groups
Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 5-11.

Voir la notice de l'article provenant de la source Library of Science

A semigroup S is said to be completely π-regular if for any a ∈ S there exists a positive integer n such that aⁿ is completely regular. The present paper is devoted to the study of completely regular semigroup congruences on bands of π-groups.
Keywords: group congruence, completely regular semigroup congruence
@article{DMGAA_2013_33_1_a0,
     author = {Maity, Sunil},
     title = {Congruences on bands of \ensuremath{\pi}-groups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a0/}
}
TY  - JOUR
AU  - Maity, Sunil
TI  - Congruences on bands of π-groups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2013
SP  - 5
EP  - 11
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a0/
LA  - en
ID  - DMGAA_2013_33_1_a0
ER  - 
%0 Journal Article
%A Maity, Sunil
%T Congruences on bands of π-groups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2013
%P 5-11
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a0/
%G en
%F DMGAA_2013_33_1_a0
Maity, Sunil. Congruences on bands of π-groups. Discussiones Mathematicae. General Algebra and Applications, Tome 33 (2013) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGAA_2013_33_1_a0/

[1] S. Bogdanovic, Semigroups with a System of Subsemigroups (Novi Sad, 1985).

[2] S. Bogdanovic and M. Ciric, Retractive Nil-extensions of Bands of Groups, Facta Universitatis 8 (1993) 11-20.

[3] T.E. Hall, On Regular Semigroups, J. Algebra 24 (1973) 1-24. doi: 10.1016/0021-8693(73)90150-6.

[4] J.M. Howie, Introduction to the theory of semigroups (Academic Press, 1976).

[5] D.R. LaTorre, Group Congruences on Regular semigroups, Semigroup Forum 24 (1982) 327-340. doi: 10.1007/BF02572776.

[6] P.M. Edwards, Eventually Regular Semigroups, Bull. Austral. Math. Soc 28 (1982) 23-38. doi: 10.1017/S0004972700026095.

[7] W.D. Munn, Pseudo-inverses in Semigroups, Proc. Camb. Phil. Soc. 57 (1961) 247-250. doi: 10.1017/S0305004100035143.

[8] M. Petrich, Regular Semigroups which are subdirect products of a band and a semilattice of groups, Glasgow Math. J. 14 (1973) 27-49. doi: 10.1017/S0017089500001701.

[9] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999).

[10] S.H. Rao and P. Lakshmi, Group Congruences on Eventually Regular Semigroups, J. Austral. Math. Soc. (Series A) 45 (1988) 320-325. doi: 10.1017/S1446788700031025.

[11] S. Sattayaporn, The Least Group Congruences On Eventually Regular Semigroups, International Journal of Algebra 4 (2010) 327-334.

[12] J. Zeleznekow, Regular semirings, Semigroup Forum 23 (1981) 119-136. doi: 10.1007/BF02676640.