Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2012_32_1_a1, author = {Steinby, Magnus}, title = {On the solidity of general varieties of tree languages}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {23--53}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a1/} }
TY - JOUR AU - Steinby, Magnus TI - On the solidity of general varieties of tree languages JO - Discussiones Mathematicae. General Algebra and Applications PY - 2012 SP - 23 EP - 53 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a1/ LA - en ID - DMGAA_2012_32_1_a1 ER -
Steinby, Magnus. On the solidity of general varieties of tree languages. Discussiones Mathematicae. General Algebra and Applications, Tome 32 (2012) no. 1, pp. 23-53. http://geodesic.mathdoc.fr/item/DMGAA_2012_32_1_a1/
[1] J. Almeida, On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics, Algebra Universalis 27 (1990), 333-350. doi: 10.1007/BF01190713
[2] A. Arnold and M. Dauchet, Morphismes et bimorphismes d'arbres, Theoretical Computer Science 13 (1982), 33-93. doi: 10.1016/0304-3975(82)90098-6
[3] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9781139172752
[4] P. Baltazar, M-solid varieties of languages, Acta Cybernetica 18 (2008), 719-731.
[5] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981. doi: 10.1007/978-1-4613-8130-3
[6] P.M. Cohn, Universal Algebra (2.ed.), D. Reidel, Dordrecht, 1981. doi: 10.1007/978-94-009-8399-1
[7] K. Denecke and J. Koppitz, M-solid positive varieties of tree languages, in: Contributions to General Algebra 19, Verlag Johannes Heyn, Klagenfurth, 2010, 57-80.
[8] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, in: Contributions to General Algebra 7, Verlag Hölder-Pichler-Tempsky, Wien, 1991, 97-118.
[9] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, in: Contributions to General Algebra 9, Verlag B.G. Teubner, Wien, 1995, 117-126.
[10] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Bleach Science Publishers, Singapore, 2000.
[11] K. Denecke and S.L. Wismath, Universal Algebra and Application in Theoretical Computer Science, Chapman Hall/CRC, Boca Raton, 2002.
[12] S. Eilenberg, Automata, Languages, and Machines Vol. B, Academic Press, New York, 1976.
[13] J. Engelfriet, Bottom-up and top-down tree transformations, Mathematical Systems Theory 9 (1975), 198-231. doi: 10.1007/BF01704020
[14] Z. Ésik, Definite tree automata and their cascade composition, Publicationes Mathematicae Debrecen 48 3-4 (1996), 243-261.
[15] Z. Ésik, A variety theorem for trees and theories, Publicationes Mathematicae Debrecen 54 Supplementum (1999), 711-762.
[16] Z. Fülöp and H. Vogler, Syntax-Directed Semantics, Formal Models Based on Tree Transducers, Springer, Berlin, 1998.
[17] F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.
[18] F. Gécseg and M. Steinby, Tree languages, in: Handbook of Formal Languages, Vol. 3 (eds. G. Rozenberg and A. Salomaa), Springer-Verlag, Berlin, 1997, 1-69. doi: 10.1007/978-3-642-59126-6_1
[19] K. Głazek, Weak homomorphisms of general algebras and related topics, Mathematical Seminar Notes 8 (1980), 1-36.
[20] E. Graczyńska and D. Schweigert, Hypervarieties of a given type, Algebra Universalis 27 (1990), 303-318.
[21] E. Graczyńska, R. Pöschel and M.V. Volkov, Solid pseudovarieties, in: General Algebra and Applications to Discrete Mathematics (eds. K. Denecke and O. Lüders), Shaker Verlag, Aachen, 1997, 93-110.
[22] U. Heuter, Definite tree languages, Bulletin of EATCS 35 (1988), 137-144.
[23] U. Heuter, Zur Klassifizierung regulärer Baumsprachen, Dissertation, Technical University of Aachen, Faculty of Natural Sciences, Aachen, 1989.
[24] E. Jurvanen, A. Potthoff and W. Thomas, Tree languages recognizable by regular frontier check, in: Developments in Language Theory (eds. G. Rozenberg and A. Salomaa), World Scientific, Singapore, 1994, 3-17.
[25] M. Kolibiar, Weak homomorphisms in some classes of algebras, Studia Scientiarum Mathematicarum Hungaria 30 (1984), 413-420.
[26] J. Koppitz and K. Denecke, M-Solid Varieties of Algebras, Springer Science+Business Media, New York, 2006. doi: 10.1007/0-387-30806-7
[27] B. Pibaljommee, M-solid pseudovarieties, Dissertation, University of Potsdam, Potsdam, 2005.
[28] V. Piirainen, Piecewise testable tree languages, TUCS Technical Report 634, Turku Centre for Computer Science, Turku, 2004.
[29] J.E. Pin, Varieties of formal languages, North Oxford Academic Publishers, Oxford, 1986. doi: 10.1007/978-1-4613-2215-3
[30] S. Salehi, Varieties of tree languages definable by syntactic monoids, Acta Cybernetica 17 (2005), 21-41.
[31] K. Salomaa, Syntactic monoids of regular forests (in Finnish). Master's Thesis, Department of Mathematics, University of Turku, Turku, 1983.
[32] D. Schweigert, Hyperidentities, in: Algebras and Orders (eds. I.G. Rosenberg and G. Sabidussi), Kluwer Academic Publishers, Dordrecht, 1993, 405-506.
[33] M. Steinby, Syntactic algebras and varieties of recognizable sets, in: Les Arbres en Algèbre et en Programmation, Proc. 4th CAAP, Lille 1979, University of Lille, Lille 1979, 226-240.
[34] M. Steinby, A theory of tree language varieties, in: Tree Automata and Languages (eds. M. Nivat and A. Podelski), North-Holland, Amsterdam, 1992, 57-81.
[35] M. Steinby, Generalized varieties of tree languages, Theoretical Computer Science 205 (1998), 1-43. doi: 10.1016/S0304-3975(98)00010-3
[36] M. Steinby, Algebraic classifications of regular tree languages, in: Structural Theory of Automata, Semigroups, and Universal Algebra (eds. V.B. Kudryavtsev and I.G. Rosenberg), Springer, Dordrecht, 2005, 381-432. doi: 10.1007/1-4020-3817-8_13
[37] J.W. Thatcher, Generalized² sequential machines, Journal of Computer Systems Science 1 (1970), 339-367. doi: 10.1016/S0022-0000(70)80017-4
[38] W. Thomas, Logical aspects in the study of tree languages, in: 9th Colloquium on Trees in Algebra and Programming (Proc. 9th CAAP, Bordeaux 1984, ed. B. Courcelle), Cambridge University Press, London, 1984, 31-49.