L-zero-divisor graphs of direct products of L-commutative rings
Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 159-174.

Voir la notice de l'article provenant de la source Library of Science

L-zero-divisor graphs of L-commutative rings have been introduced and studied in [5]. Here we consider L-zero-divisor graphs of a finite direct product of L-commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the L-ziro-divisor graph of a L-ring when extending to a finite direct product of L-commutative rings.
Keywords: μ-zero-divisor, L-zero-divisor graph, μ-diameter, μ-girth, finite direct products
@article{DMGAA_2011_31_2_a2,
     author = {Atani, S. and Kohan, M.},
     title = {L-zero-divisor graphs of direct products of {L-commutative} rings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {159--174},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a2/}
}
TY  - JOUR
AU  - Atani, S.
AU  - Kohan, M.
TI  - L-zero-divisor graphs of direct products of L-commutative rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2011
SP  - 159
EP  - 174
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a2/
LA  - en
ID  - DMGAA_2011_31_2_a2
ER  - 
%0 Journal Article
%A Atani, S.
%A Kohan, M.
%T L-zero-divisor graphs of direct products of L-commutative rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2011
%P 159-174
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a2/
%G en
%F DMGAA_2011_31_2_a2
Atani, S.; Kohan, M. L-zero-divisor graphs of direct products of L-commutative rings. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 159-174. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a2/

[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840

[2] M. Axtell, J. Stickles and J. Warfel, Zero-divisor graphs of direct products of commutative rings, Houston J. of Math. 22 (2006), 985-994.

[3] D.F. Anderson, M.C. Axtell and J.A. Stickles, Zero-divisor graphs in commutative rings, in: Commutative Algebra, Noetherian and non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds), Springer-Verlag, New York, 2.11, 23-45.

[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226. doi: 10.1016/0021-8693(88)90202-5

[5] S. Ebrahimi Atani and M. Shajari Kohan, On L-ideal-based L-zero-divisor graphs, Discuss. Math. General Algebra and Applications, to appear.

[6] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174.

[7] W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems, 11 (1983), 31-41.

[8] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0

[9] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.

[10] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502

[11] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517.

[12] A. Rosenfeld, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.

[13] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, in: Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.

[14] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X