On L-ideal-based L-zero-divisor graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 127-145.

Voir la notice de l'article provenant de la source Library of Science

In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.
Keywords: μ-Zero-divisor, L-zero-divisor graph, μ-diameter, μ-girth, μ-nilradical ideal, μ-domainlike ring
@article{DMGAA_2011_31_2_a0,
     author = {Atani, S. and Kohan, M.},
     title = {On {L-ideal-based} {L-zero-divisor} graphs},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {127--145},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a0/}
}
TY  - JOUR
AU  - Atani, S.
AU  - Kohan, M.
TI  - On L-ideal-based L-zero-divisor graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2011
SP  - 127
EP  - 145
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a0/
LA  - en
ID  - DMGAA_2011_31_2_a0
ER  - 
%0 Journal Article
%A Atani, S.
%A Kohan, M.
%T On L-ideal-based L-zero-divisor graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2011
%P 127-145
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a0/
%G en
%F DMGAA_2011_31_2_a0
Atani, S.; Kohan, M. On L-ideal-based L-zero-divisor graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 2, pp. 127-145. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_2_a0/

[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840

[2] D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure App. Algebra 210 (2) (2007), 543-550. doi: 10.1016/j.jpaa.2006.10.007

[3] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092. doi: 10.1080/00927870802110888

[4] M. Axtell, J. Coykendall and J. Stickles, Zero-divisor graphs of polynomial and power series over commutative rings, Comm. Algebra 33 (2005), 2043-2050. doi:10.1081/AGB-200063357

[5] D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero-divisors, Rocky Mountain J. of Math. 26 (1996), 439-480. doi: 10.1216/rmjm/1181072068

[6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5

[7] S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glasnik Matematicki 44 (64) (2009), 141-153. doi: 10.3336/gm.44.1.07

[8] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174.

[9] K.H. Lee and J.N. Mordeson, Fractionary fuzzy ideals and Dedekind domains, Fuzzy Sets and Systems 99 (1998), 105-110. doi: 10.1016/S0165-0114(97)00012-2

[10] W.J. Liu, Operation on fuzzy ideals, Fuzzy Sets and Systems 11 (1983), 31-41.

[11] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0

[12] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.

[13] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502

[14] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517.

[15] S. Redmond, The zero-divisor graph of a non-commutative ring, International J. Commutative rings 1 (4) (2002), 203-211.

[16] S. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra 34 (2006), 2389-2401. doi: 10.1080/00927870600649103

[17] A. Rosenfeld and Fuzzy graphs, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.

[18] F.I. Sidky, On radicals of fuzzy submodules and primary fuzzy submodules, Fuzzy Sets and Systems 119 (2001), 419-425. doi: 10.1016/S0165-0114(99)00101-3

[19] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, In Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.

[20] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X