Leaping convergents of Hurwitz continued fractions
Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 1, pp. 101-121.

Voir la notice de l'article provenant de la source Library of Science

Let pₙ/qₙ = [a₀;a₁,...,aₙ] be the n-th convergent of the continued fraction expansion of [a₀;a₁,a₂,...]. Leaping convergents are those of every r-th convergent p_rn+i/q_rn+i (n = 0,1,2,...) for fixed integers r and i with r ≥ 2 and i = 0,1,...,r-1. The leaping convergents for the e-type Hurwitz continued fractions have been studied. In special, recurrence relations and explicit forms of such leaping convergents have been treated. In this paper, we consider recurrence relations and explicit forms of the leaping convergents for some different types of Hurwitz continued fractions.
Keywords: Leaping convergents, Hurwitz continued fractions
@article{DMGAA_2011_31_1_a5,
     author = {Komatsu, Takao},
     title = {Leaping convergents of {Hurwitz} continued fractions},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {101--121},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a5/}
}
TY  - JOUR
AU  - Komatsu, Takao
TI  - Leaping convergents of Hurwitz continued fractions
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2011
SP  - 101
EP  - 121
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a5/
LA  - en
ID  - DMGAA_2011_31_1_a5
ER  - 
%0 Journal Article
%A Komatsu, Takao
%T Leaping convergents of Hurwitz continued fractions
%J Discussiones Mathematicae. General Algebra and Applications
%D 2011
%P 101-121
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a5/
%G en
%F DMGAA_2011_31_1_a5
Komatsu, Takao. Leaping convergents of Hurwitz continued fractions. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 1, pp. 101-121. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a5/

[1] C. Elsner, On arithmetic properties of the convergents of Euler's number, Colloq. Math. 79 (1999), 133-145.

[2] C. Elsner and T. Komatsu, A recurrence formula for leaping convergents of non-regular continued fractions, Linear Algebra Appl. 428 (2008), 824-833. doi: 10.1016/j.laa.2007.08.011

[3] T. Komatsu, Recurrence relations of the leaping convergents, JP J. Algebra Number Theory Appl. 3 (2003), 447-459.

[4] T. Komatsu, Arithmetical properties of the leaping convergents of $e^{1/s}$, Tokyo J. Math. 27 (2004), 1-12. doi: 10.3836/tjm/1244208469

[5] T. Komatsu, Some combinatorial properties of the leaping convergents, p. 315-325 in: Combinatorial Number Theory, 'Proceedings of the Integers Conference 2005 in Celebration of the 70th Birthday of Ronald Graham', Carrollton, Georgia, USA, October 27-30, 2005, eds. by B.M. Landman, M.B. Nathanson, J. Nesetril, R.J. Nowakowski and C. Pomerance, Walter de Gruyter 2007.

[6] T. Komatsu, Some combinatorial properties of the leaping convergents, II, Applications of Fibonacci Numbers, Proceedings of 12th International Conference on Fibonacci Numbers and their Applications', Congr. Numer. 200 (2010), 187-196.

[7] T. Komatsu, Hurwitz continued fractions with confluent hypergeometric functions, Czech. Math. J. 57 (2007), 919-932. doi: 10.1007/s10587-007-0085-1