Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2011_31_1_a5, author = {Komatsu, Takao}, title = {Leaping convergents of {Hurwitz} continued fractions}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {101--121}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a5/} }
TY - JOUR AU - Komatsu, Takao TI - Leaping convergents of Hurwitz continued fractions JO - Discussiones Mathematicae. General Algebra and Applications PY - 2011 SP - 101 EP - 121 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a5/ LA - en ID - DMGAA_2011_31_1_a5 ER -
Komatsu, Takao. Leaping convergents of Hurwitz continued fractions. Discussiones Mathematicae. General Algebra and Applications, Tome 31 (2011) no. 1, pp. 101-121. http://geodesic.mathdoc.fr/item/DMGAA_2011_31_1_a5/
[1] C. Elsner, On arithmetic properties of the convergents of Euler's number, Colloq. Math. 79 (1999), 133-145.
[2] C. Elsner and T. Komatsu, A recurrence formula for leaping convergents of non-regular continued fractions, Linear Algebra Appl. 428 (2008), 824-833. doi: 10.1016/j.laa.2007.08.011
[3] T. Komatsu, Recurrence relations of the leaping convergents, JP J. Algebra Number Theory Appl. 3 (2003), 447-459.
[4] T. Komatsu, Arithmetical properties of the leaping convergents of $e^{1/s}$, Tokyo J. Math. 27 (2004), 1-12. doi: 10.3836/tjm/1244208469
[5] T. Komatsu, Some combinatorial properties of the leaping convergents, p. 315-325 in: Combinatorial Number Theory, 'Proceedings of the Integers Conference 2005 in Celebration of the 70th Birthday of Ronald Graham', Carrollton, Georgia, USA, October 27-30, 2005, eds. by B.M. Landman, M.B. Nathanson, J. Nesetril, R.J. Nowakowski and C. Pomerance, Walter de Gruyter 2007.
[6] T. Komatsu, Some combinatorial properties of the leaping convergents, II, Applications of Fibonacci Numbers, Proceedings of 12th International Conference on Fibonacci Numbers and their Applications', Congr. Numer. 200 (2010), 187-196.
[7] T. Komatsu, Hurwitz continued fractions with confluent hypergeometric functions, Czech. Math. J. 57 (2007), 919-932. doi: 10.1007/s10587-007-0085-1