Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2010_30_2_a3, author = {Wojciechowska-Rysiawa, Magdalena}, title = {A note on good pseudo {BL-algebras}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {193--205}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a3/} }
TY - JOUR AU - Wojciechowska-Rysiawa, Magdalena TI - A note on good pseudo BL-algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2010 SP - 193 EP - 205 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a3/ LA - en ID - DMGAA_2010_30_2_a3 ER -
Wojciechowska-Rysiawa, Magdalena. A note on good pseudo BL-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 193-205. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a3/
[1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9
[2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673-714.
[3] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras II, Multiple-Valued Logic 8 (2002), 717-750.
[4] G. Dymek, Bipartite pseudo MV-algebras, Discussiones Math., General Algebra and Appl. 26 (2006), 183-197.
[5] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Comment. Math. 47 (2007), 117-126.
[6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-algebras, 'The Proceedings of the Fourth International Symposium on Economic Informatics', Bucharest, Romania, May (1999), 961-968.
[7] G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: a noncommutative extension of BL-algebras, 'Abstracts of the Fifth International Conference FSTA 2000', Slovakia (2000), 90-92.
[8] G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002), 127-153. doi: 10.1017/S144678870000851X
[9] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam 1998. doi: 10.1007/978-94-011-5300-3
[10] P. Hájek, Fuzzy logics with noncommutative conjuctions, Journal of Logic and Computation 13 (2003), 469-479. doi: 10.1093/logcom/13.4.469
[11] P. Hájek, Observations on non-commutative fuzzy logic, Soft Computing 8 (2003), 38-43. doi: 10.1007/s00500-002-0246-y
[12] J. Rachůnek, A non-commutative generalisations of MV-algebras, Math. Slovaca 52 (2002), 255-273.
[13] A. Walendziak and M. Wojciechowska, Bipartite pseudo BL-algebras, Demonstratio Mathematica XLIII (3) (2010), 487-496.