A note on good pseudo BL-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 193-205.

Voir la notice de l'article provenant de la source Library of Science

Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.
Keywords: pseudo BL-algebra, filter, (strongly) bipartite pseudo BL-algebra
@article{DMGAA_2010_30_2_a3,
     author = {Wojciechowska-Rysiawa, Magdalena},
     title = {A note on good pseudo {BL-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {193--205},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a3/}
}
TY  - JOUR
AU  - Wojciechowska-Rysiawa, Magdalena
TI  - A note on good pseudo BL-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2010
SP  - 193
EP  - 205
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a3/
LA  - en
ID  - DMGAA_2010_30_2_a3
ER  - 
%0 Journal Article
%A Wojciechowska-Rysiawa, Magdalena
%T A note on good pseudo BL-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2010
%P 193-205
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a3/
%G en
%F DMGAA_2010_30_2_a3
Wojciechowska-Rysiawa, Magdalena. A note on good pseudo BL-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 193-205. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a3/

[1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9

[2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673-714.

[3] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras II, Multiple-Valued Logic 8 (2002), 717-750.

[4] G. Dymek, Bipartite pseudo MV-algebras, Discussiones Math., General Algebra and Appl. 26 (2006), 183-197.

[5] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Comment. Math. 47 (2007), 117-126.

[6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-algebras, 'The Proceedings of the Fourth International Symposium on Economic Informatics', Bucharest, Romania, May (1999), 961-968.

[7] G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: a noncommutative extension of BL-algebras, 'Abstracts of the Fifth International Conference FSTA 2000', Slovakia (2000), 90-92.

[8] G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002), 127-153. doi: 10.1017/S144678870000851X

[9] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam 1998. doi: 10.1007/978-94-011-5300-3

[10] P. Hájek, Fuzzy logics with noncommutative conjuctions, Journal of Logic and Computation 13 (2003), 469-479. doi: 10.1093/logcom/13.4.469

[11] P. Hájek, Observations on non-commutative fuzzy logic, Soft Computing 8 (2003), 38-43. doi: 10.1007/s00500-002-0246-y

[12] J. Rachůnek, A non-commutative generalisations of MV-algebras, Math. Slovaca 52 (2002), 255-273.

[13] A. Walendziak and M. Wojciechowska, Bipartite pseudo BL-algebras, Demonstratio Mathematica XLIII (3) (2010), 487-496.