The monoid of generalized hypersubstitutions of type τ = (n)
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 173-191

Voir la notice de l'article provenant de la source Library of Science

A (usual) hypersubstitution of type τ is a function which takes each operation symbol of the type to a term of the type, of the same arity. The set of all hypersubstitutions of a fixed type τ forms a monoid under composition, and semigroup properties of this monoid have been studied by a number of authors. In particular, idempotent and regular elements, and the Green's relations, have been studied for type (n) by S.L. Wismath.
Keywords: monoid, regular elements, idempotent elements, Green's relations, generalized hypersubstitution
@article{DMGAA_2010_30_2_a2,
     author = {Puninagool, Wattapong and Leeratanavalee, Sorasak},
     title = {The monoid of generalized hypersubstitutions of type \ensuremath{\tau} = (n)},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {173--191},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/}
}
TY  - JOUR
AU  - Puninagool, Wattapong
AU  - Leeratanavalee, Sorasak
TI  - The monoid of generalized hypersubstitutions of type τ = (n)
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2010
SP  - 173
EP  - 191
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/
LA  - en
ID  - DMGAA_2010_30_2_a2
ER  - 
%0 Journal Article
%A Puninagool, Wattapong
%A Leeratanavalee, Sorasak
%T The monoid of generalized hypersubstitutions of type τ = (n)
%J Discussiones Mathematicae. General Algebra and Applications
%D 2010
%P 173-191
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/
%G en
%F DMGAA_2010_30_2_a2
Puninagool, Wattapong; Leeratanavalee, Sorasak. The monoid of generalized hypersubstitutions of type τ = (n). Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 173-191. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/