The monoid of generalized hypersubstitutions of type τ = (n)
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 173-191.

Voir la notice de l'article provenant de la source Library of Science

A (usual) hypersubstitution of type τ is a function which takes each operation symbol of the type to a term of the type, of the same arity. The set of all hypersubstitutions of a fixed type τ forms a monoid under composition, and semigroup properties of this monoid have been studied by a number of authors. In particular, idempotent and regular elements, and the Green's relations, have been studied for type (n) by S.L. Wismath.
Keywords: monoid, regular elements, idempotent elements, Green's relations, generalized hypersubstitution
@article{DMGAA_2010_30_2_a2,
     author = {Puninagool, Wattapong and Leeratanavalee, Sorasak},
     title = {The monoid of generalized hypersubstitutions of type \ensuremath{\tau} = (n)},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {173--191},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/}
}
TY  - JOUR
AU  - Puninagool, Wattapong
AU  - Leeratanavalee, Sorasak
TI  - The monoid of generalized hypersubstitutions of type τ = (n)
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2010
SP  - 173
EP  - 191
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/
LA  - en
ID  - DMGAA_2010_30_2_a2
ER  - 
%0 Journal Article
%A Puninagool, Wattapong
%A Leeratanavalee, Sorasak
%T The monoid of generalized hypersubstitutions of type τ = (n)
%J Discussiones Mathematicae. General Algebra and Applications
%D 2010
%P 173-191
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/
%G en
%F DMGAA_2010_30_2_a2
Puninagool, Wattapong; Leeratanavalee, Sorasak. The monoid of generalized hypersubstitutions of type τ = (n). Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 173-191. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a2/

[1] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, Hyperequational Classes, and Clone Congruences, Verlag Hölder-Pichler-Tempsky, Wien, Contributions to General Algebra 7 (1991), 97-118.

[2] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, p. 135-145 in: General Algebra and Applications, Proc. of the '59 th Workshop on General Algebra', '15 th Conference for Young Algebraists Potsdam 2000', Shaker Verlag 2000.

[3] S. Leeratanavalee, Submonoids of Generalized Hypersubstitutions, Demonstratio Mathematica XL (1) (2007), 13-22.

[4] W. Puninagool and S. Leeratanavalee, All Regular Elements in $Hyp_{G](2)$, preprint 2009.

[5] W. Puninagool and S. Leeratanavalee, Green's Relations on $Hyp_{G](2)$, preprint 2009.

[6] W. Puninagool and S. Leeratanavalee, The Order of Generalized Hypersubstitutions of Type τ =(2), International Journal of Mathematics and Mathematical Sciences, Vol 2008 (2008), Article ID 263541, 8 pages. doi: 10.1155/2008/263541

[7] W. Taylor, Hyperidentities and Hypervarieties, Aequationes Mathematicae 23 (1981), 111-127.

[8] S.L. Wismath, The monoid of hypersubstitutions of type (n), Southeast Asian Bull. Math. 24 (1) (2000), 115-128.