Factoring an odd abelian group by lacunary cyclic subsets
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 137-146
Voir la notice de l'article provenant de la source Library of Science
It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.
Keywords:
factorization of finite abelian groups, periodic subsets, cyclic subsets, lacunary cyclic subsets, Hajós-Rédei theory
@article{DMGAA_2010_30_2_a0,
author = {Szab\'o, S\'andor},
title = {Factoring an odd abelian group by lacunary cyclic subsets},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {137--146},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/}
}
TY - JOUR AU - Szabó, Sándor TI - Factoring an odd abelian group by lacunary cyclic subsets JO - Discussiones Mathematicae. General Algebra and Applications PY - 2010 SP - 137 EP - 146 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/ LA - en ID - DMGAA_2010_30_2_a0 ER -
Szabó, Sándor. Factoring an odd abelian group by lacunary cyclic subsets. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 137-146. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/