Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2010_30_2_a0, author = {Szab\'o, S\'andor}, title = {Factoring an odd abelian group by lacunary cyclic subsets}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {137--146}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/} }
TY - JOUR AU - Szabó, Sándor TI - Factoring an odd abelian group by lacunary cyclic subsets JO - Discussiones Mathematicae. General Algebra and Applications PY - 2010 SP - 137 EP - 146 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/ LA - en ID - DMGAA_2010_30_2_a0 ER -
Szabó, Sándor. Factoring an odd abelian group by lacunary cyclic subsets. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 137-146. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/
[1] K. Corrádi and S. Szabó, A Hajós type result on factoring finite abelian groups by subsets, Mathematica Pannonica 5 (1994), 275-280.
[2] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Zeit. 47 (1942), 427-467. doi: 10.1007/BF01180974
[3] L. Rédei, Die neue Theorie der Endlichen Abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), 329-373. doi: 10.1007/BF01904843
[4] A.D. Sands, A note on distorted cyclic subsets, Mathematica Pannonica 20 (2009), 123-127.
[5] S. Szabó and A.D. Sands, Factoring Groups into Subsets, Chapman and Hall, CRC, Taylor and Francis Group, Boca Raton 2009.