Factoring an odd abelian group by lacunary cyclic subsets
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 137-146
Cet article a éte moissonné depuis la source Library of Science
It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.
Keywords:
factorization of finite abelian groups, periodic subsets, cyclic subsets, lacunary cyclic subsets, Hajós-Rédei theory
@article{DMGAA_2010_30_2_a0,
author = {Szab\'o, S\'andor},
title = {Factoring an odd abelian group by lacunary cyclic subsets},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {137--146},
year = {2010},
volume = {30},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/}
}
Szabó, Sándor. Factoring an odd abelian group by lacunary cyclic subsets. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 2, pp. 137-146. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_2_a0/
[1] K. Corrádi and S. Szabó, A Hajós type result on factoring finite abelian groups by subsets, Mathematica Pannonica 5 (1994), 275-280.
[2] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Zeit. 47 (1942), 427-467. doi: 10.1007/BF01180974
[3] L. Rédei, Die neue Theorie der Endlichen Abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), 329-373. doi: 10.1007/BF01904843
[4] A.D. Sands, A note on distorted cyclic subsets, Mathematica Pannonica 20 (2009), 123-127.
[5] S. Szabó and A.D. Sands, Factoring Groups into Subsets, Chapman and Hall, CRC, Taylor and Francis Group, Boca Raton 2009.