A reduction theorem for ring varieties whose subvariety lattice is distributive
Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 1, pp. 119-132.

Voir la notice de l'article provenant de la source Library of Science

We prove a theorem (for arbitrary ring varieties and, in a stronger form, for varieties of associative rings) which basically reduces the problem of a description of varieties with distributive subvariety lattice to the case of algebras over a finite prime field.
Keywords: variety of rings, subvariety lattice, distributive lattice, torsion-bounded variety, Mal'tsev product
@article{DMGAA_2010_30_1_a5,
     author = {Volkov, Mikhail},
     title = {A reduction theorem for ring varieties whose subvariety lattice is distributive},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {119--132},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a5/}
}
TY  - JOUR
AU  - Volkov, Mikhail
TI  - A reduction theorem for ring varieties whose subvariety lattice is distributive
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2010
SP  - 119
EP  - 132
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a5/
LA  - en
ID  - DMGAA_2010_30_1_a5
ER  - 
%0 Journal Article
%A Volkov, Mikhail
%T A reduction theorem for ring varieties whose subvariety lattice is distributive
%J Discussiones Mathematicae. General Algebra and Applications
%D 2010
%P 119-132
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a5/
%G en
%F DMGAA_2010_30_1_a5
Volkov, Mikhail. A reduction theorem for ring varieties whose subvariety lattice is distributive. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 1, pp. 119-132. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a5/

[1] D.S. Ananichev, Almost distributive varieties of Lie rings, Mat. Sbornik 186 (4) (1995), 3-20 [Russian; Engl. translation Sbornik: Math. 186 (4) (1995), 465-483].

[2] V.A. Artamonov, On chain varieties of linear algebras, Trans. Am. Math. Soc. 221 (1976), 323-338. doi: 10.1090/S0002-9947-1976-0409572-5

[3] V.A. Artamonov, Lattices of varieties of linear algebras, Uspekhi Mat. Nauk 33 (2) (1978) 135-167 [Russian; Engl. translation Russ. Math. Surv. 33 (2) (1978), 155-193].

[4] G. Grätzer, General lattice theory, 2nd ed., Birkhäuser Verlag, Basel 1998.

[5] A.I. Mal'tsev, On a multiplication of classes of algebraic systems, Sib. Mat. Zh. 8 (2) (1967), 346-365 [Russian; Engl. translation Sib. Math. J. 8 (1967), 254-267]. doi: 10.1007/BF02302476

[6] Yu.N. Mal'tsev, On distributive varieties of associative algebras, in Investigations in the Theory of Rings, Algebras and Modules (Mat. Issledovaniya, Kishinev 76) (1984), 73-98 [Russian].

[7] M.V. Volkov, Lattices of varieties of algebras, Mat. Sbornik 109 (1) (1979) 60-79 [Russian; Engl. translation Math. USSR, Sbornik 37 (1) (1980), 53-69].

[8] M.V. Volkov, Periodic varieties of associative rings, Izvestiya VUZ. Matematika no.8 (1979) 3-13 [Russian; Engl. translation Soviet Math., Izv. VUZ 23 (8) (1979), 1-12].

[9] M.V. Volkov, Identities in lattices of ring varieties, Algebra Universalis 23 (1986), 32-43. doi: 10.1007/BF01190909

[10] M.V. Volkov and A.G. Geĭn, Identities of almost nilpotent Lie rings, Mat. Sbornik 118 (1) (1982), 132-142 [Russian; Engl. translation Math. USSR, Sbornik 46 (1) (1983), 133-142].

[11] E.I. Zel'manov, On Engel Lie algebras, Sibirsk. Mat. Zh 26 (5) (1988), 112-117 [Russian; Engl. translation Siberian Math. J. 29 (5) (1988), 777-781].

[12] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov and A.I. Shirshov, Rings that are nearly associative, Academic Press, New York 1982.