Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2010_30_1_a2, author = {Ricci, Gabriele}, title = {Flocks in universal and {Boolean} algebras}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {45--69}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a2/} }
Ricci, Gabriele. Flocks in universal and Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 30 (2010) no. 1, pp. 45-69. http://geodesic.mathdoc.fr/item/DMGAA_2010_30_1_a2/
[1] R. Baer, Linear Algebra and Projective Geometry (Academic Press, New York 1952).
[2] H. B. Curry and R. Feys, Combinatory Logic, Vol. I, (North-Holland, Amsterdam 1958).
[3] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publishers, Amsterdam 2000).
[4] K. Denecke, Menger algebras and clones of terms. East-West J. Math. 5 (2) (2003), 179-193.
[5] K. Głazek, Algebras of Operations, in A.G. Pinus and K.N. Ponomaryov, Algebra and Model Theory 2 (Novosibirsk, 1999) 37-49.
[6] J.D. Monk, Introduction to Set Theory (McGraw-Hill, New York 1969).
[7] G. Ricci, P-algebras and combinatory notation, Riv. Mat. Univ. Parma 5(4) (1979), 577-589.
[8] G. Ricci, Universal eigenvalue equations, Pure Math. and Appl. Ser. B, 3, 2-3-4 (1992), 231-288. (Most of the misprints appear in ERRATA to Universal eigenvalue equations, Pure Math. and Appl. Ser. B, 5, 2 (1994), 241-243. Anyway, the original version is in http://www.cs.unipr.it/~ricci/)
[9] G. Ricci, Two isotropy properties of 'universal eigenspaces' (and a problem for DT0L rewriting systems), in G. Pilz, Contributions to General Algebra 9 (Verlag Hölder-Pichler-Tempsky, Wien 1995 - Verlag B.G. Teubner), 281-290.
[10] G. Ricci, Some analytic features of algebraic data, Discrete Appl. Math. 122/1-3 (2002), 235-249. doi: 10.1016/S0166-218X(01)00323-7
[11] G. Ricci, A semantic construction of two-ary integers, Discuss. Math. Gen. Algebra Appl. 25 (2005), 165-219. doi: 10.7151/dmgaa.1099
[12] G. Ricci, Dilatations kill fields, Int. J. Math. Game Theory Algebra, 16 5/6 (2007), 13-34.
[13] G. Ricci, All commutative based algebras have endowed dilatation monoids, (to appear on Houston J. of Math.).
[14] G. Ricci, Another characterization of vector spaces without fields, in G. Dorfer, G. Eigenthaler, H. Kautschitsch, W. More, W.B. Müller. (Hrsg.): Contributions to General Algebra 18. Klagenfurt: Verlag Heyn GmbH Co KG, 31 February 2008, 139-150.
[15] G. Ricci, Transformations between Menger systems, Demonstratio Math. 41 (4) (2008), 743-762.
[16] G. Ricci, Sameness between based universal algebras, Demonstratio Math. 42 (1) (2009), 1-20.
[17] M. Steinby, On algebras as tree automata, Colloquia Mathematica Societatis János Bolyai, 17. Contributions to Universal Algebra, Szeged (1975), 441-455.
[18] B. Vormbrock and R. Wille, Semiconcept and Protoconcept Algebras: The Basic Theorems, in B. Ganter, G. Stumme R. Wille (eds.), Formal Concept Analysis: Foundations and Applications, (Springer-Verlag, Berlin 2005). doi: 10.1007/11528784₂