Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2009_29_2_a6, author = {Knyazhansky, Marina and Plotkin, Tatjana}, title = {Knowledge bases and automorphic equivalence of multi-models versus linear spaces and graphs}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {203--213}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a6/} }
TY - JOUR AU - Knyazhansky, Marina AU - Plotkin, Tatjana TI - Knowledge bases and automorphic equivalence of multi-models versus linear spaces and graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2009 SP - 203 EP - 213 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a6/ LA - en ID - DMGAA_2009_29_2_a6 ER -
%0 Journal Article %A Knyazhansky, Marina %A Plotkin, Tatjana %T Knowledge bases and automorphic equivalence of multi-models versus linear spaces and graphs %J Discussiones Mathematicae. General Algebra and Applications %D 2009 %P 203-213 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a6/ %G en %F DMGAA_2009_29_2_a6
Knyazhansky, Marina; Plotkin, Tatjana. Knowledge bases and automorphic equivalence of multi-models versus linear spaces and graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 2, pp. 203-213. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a6/
[1] J.J. Cannon and D.F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (3) (2003), 241-267.
[2] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York 1972.
[3] M. Knyazhansky, Categorical Model of Knowledge Base and its Applications to Knowledge Bases Equivalence Verification Ph.D.Thesis, Bar Ilan University (2009) submitted.
[4] M. Knyazhansky and T. Plotkin, Automorphic equivalence of multi-models recognition, Armenian Journal of Mathematics, 1 (2) (2008), 10-24.
[5] M. Krasner, Généralisation abstraite de la théorie de Galois, Colloque Int. du CNRS (Algèbre et théorie des nombres) 24 (1949), 163-168.
[6] E.A. O'Brien, Isomorphism testing for p-groups, J. Symbolic Comput. 16 (3) (1993), 305-320.
[7] B. Plotkin, Universal Algebra, Algebraic Logic and Databases, Kluwer 1993.
[8] B. Plotkin, Seven Lectures in Universal Algebraic Geometry, Preprint, Arxiv math, GM/0204245 (2002) 87pp.
[9] B. Plotkin and T. Plotkin, Geometrical aspect of databases and knowledge bases, Algebra Universalis 46 (2001), 131-161.
[10] B. Plotkin and T. Plotkin, An algebraic approach to knowledge bases equivalence, Acta Applicandae Mathematicae, Dordreht, Holland 89 (2005), 109-134.
[11] B. Plotkin and T. Plotkin, Categories of elementary sets over algebras and categories of elementary algebraic knowledge, LNCS, Springer-Verlag, 4800 (2008), 555-570.
[12] C.M. Roney-Dougal, Conjugacy of subgroups of the general linear group, Experiment. Math. 13 (2) (2004), 151-163.
[13] C.C. Sims, Computation with Finitely Presented Groups. Cambridge University Press (1994) xiii+604 pp.
[14] A. Tarski, Logic, Semantics, Metamathematics, Oxford University Press, Oxford 1983. Second edition, (First edition 1956).
[15] M.V. Volkov, The finite basis problem for finite semigroups, Sci. Math. Jpn., 53 (1) (2001), 171-199.