Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2009_29_2_a1, author = {Couceiro, Miguel and Foldes, Stephan}, title = {Function classes and relational constraints stable under compositions with clones}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {109--121}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a1/} }
TY - JOUR AU - Couceiro, Miguel AU - Foldes, Stephan TI - Function classes and relational constraints stable under compositions with clones JO - Discussiones Mathematicae. General Algebra and Applications PY - 2009 SP - 109 EP - 121 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a1/ LA - en ID - DMGAA_2009_29_2_a1 ER -
%0 Journal Article %A Couceiro, Miguel %A Foldes, Stephan %T Function classes and relational constraints stable under compositions with clones %J Discussiones Mathematicae. General Algebra and Applications %D 2009 %P 109-121 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a1/ %G en %F DMGAA_2009_29_2_a1
Couceiro, Miguel; Foldes, Stephan. Function classes and relational constraints stable under compositions with clones. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 2, pp. 109-121. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a1/
[1] M. Couceiro and S. Foldes, Definability of Boolean function classes by linear equations over GF(2), Discrete Applied Mathematics 142 (2004), 29-34.
[2] M. Couceiro and S. Foldes, On affine constraints satisfied by Boolean functions, Rutcor Research Report 3-2003, Rutgers University, http://rutcor.rutgers.edu/~rrr/.
[3] M. Couceiro and S. Foldes, On closed sets of relational constraints and classes of functions closed under variable substitutions, Algebra Universalis 54 (2005), 149-165.
[4] M. Couceiro and S. Foldes, Functional equations, constraints, definability of function classes, and functions of Boolean variables, Acta Cybernetica 18 (2007), 61-75.
[5] O. Ekin, S. Foldes, P.L. Hammer and L. Hellerstein, Equational characterizations of Boolean function classes, Discrete Mathematics 211 (2000), 27-51.
[6] S. Foldes and P.L. Hammer, Algebraic and topological closure conditions for classes of pseudo-Boolean functions, Discrete Applied Mathematics 157 (2009), 2818-2827.
[7] D. Geiger, Closed systems of functions and predicates, Pacific Journal of Mathematics 27 (1968), 95-100.
[8] L. Lovász, Submodular functions and convexity pp. 235-257 in: Mathematical Programming-The State of the Art, A. Bachem, M. Grötschel, B. Korte (Eds.), Springer, Berlin 1983.
[9] N. Pippenger, Galois theory for minors of finite functions, Discrete Mathematics 254 (2002), 405-419.
[10] R. Pöschel, Concrete representation of algebraic structures and a general Galois theory, Contributions to General Algebra, Proceedings Klagenfurt Conference, May 25-28 (1978) 249-272. Verlag J. Heyn, Klagenfurt, Austria 1979.
[11] R. Pöschel, A general Galois theory for operations and relations and concrete characterization of related algebraic structures, Report R-01/80, Zentralinstitut für Math. und Mech., Berlin 1980.
[12] R. Pöschel, Galois connections for operations and relations, in Galois connections and applications, K. Denecke, M. Erné, S.L. Wismath (eds.), Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht 2004.
[13] L. Szabó, Concrete representation of related structures of universal algebras, Acta Sci. Math. (Szeged) 40 (1978), 175-184.