Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2009_29_2_a0, author = {Anantpinitwatna, Apinant and Poomsa-ard, Tiang}, title = {Special m-hyperidentities in biregular leftmost graph varieties of type (2,0)}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {81--107}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a0/} }
TY - JOUR AU - Anantpinitwatna, Apinant AU - Poomsa-ard, Tiang TI - Special m-hyperidentities in biregular leftmost graph varieties of type (2,0) JO - Discussiones Mathematicae. General Algebra and Applications PY - 2009 SP - 81 EP - 107 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a0/ LA - en ID - DMGAA_2009_29_2_a0 ER -
%0 Journal Article %A Anantpinitwatna, Apinant %A Poomsa-ard, Tiang %T Special m-hyperidentities in biregular leftmost graph varieties of type (2,0) %J Discussiones Mathematicae. General Algebra and Applications %D 2009 %P 81-107 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a0/ %G en %F DMGAA_2009_29_2_a0
Anantpinitwatna, Apinant; Poomsa-ard, Tiang. Special m-hyperidentities in biregular leftmost graph varieties of type (2,0). Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 2, pp. 81-107. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_2_a0/
[1] A. Ananpinitwatna and T. Poomsa-ard, Identities in biregular leftmost graph varieties of type (2,0), Asian-European J. of Math. 2 (1) (2009), 1-18.
[2] A. Ananpinitwatna and T. Poomsa-ard, Hyperidentities in biregular leftmost graph varieties of type (2,0), Int. Math. Forum 4 (18) (2009), 845-864.
[3] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC 2002.
[4] K. Denecke and T. Poomsa-ard, Hyperidentities in graph algebras, Contributions to General Algebra and Aplications in Discrete Mathematics, Potsdam (1997), 59-68.
[5] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Verlag Hölder-Pichler-Tempsky, Wien, Contributions to General Algebra 7 (1991), 97-118.
[6] M. Krapeedang and T. Poomsa-ard, Biregular leftmost graph varieties of type (2,0), accepted to publish in AAMS.
[7] E.W. Kiss, R. Pöschel and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. 54 (1990), 57-75.
[8] J.Khampakdee and T. Poomsa-ard, Hyperidentities in (xy)x ≈ x(yy) graph algebras of type (2,0), Bull. Khorean Math. Soc. 44 (4) (2007), 651-661.
[9] J. Płonka, Hyperidentities in some of vareties, pp. 195-213 in: General Algebra and discrete Mathematics ed. by K. Denecke and O. Lüders, Lemgo 1995.
[10] J. Płonka, Proper and inner hypersubstitutions of varieties, pp. 106-115 in: 'Proceedings of the International Conference: Summer School on General Algebra and Ordered Sets 1994', Palacký University Olomouce 1994.
[11] T. Poomsa-ard, Hyperidentities in associative graph algebras, Discussiones Mathematicae General Algebra and Applications 20 (2) (2000), 169-182.
[12] T. Poomsa-ard, J. Wetweerapong and C. Samartkoon, Hyperidentities in idempotent graph algebras, Thai Journal of Mathematics 2 (2004), 171-181.
[13] T. Poomsa-ard, J. Wetweerapong and C. Samartkoon, Hyperidentities in transitive graph algebras, Discussiones Mathematicae General Algebra and Applications 25 (1) (2005), 23-37.
[14] R. Pöschel, The equational logic for graph algebras, Zeitschr.f.math. Logik und Grundlagen d. Math. Bd. S. 35 (1989), 273-282.
[15] R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990), 559-577.
[16] R. Pöschel and W. Wessel, Classes of graph definable by graph algebras identities or quasiidentities, Comment. Math. Univ, Carolinae 28 (1987), 581-592.
[17] C.R. Shallon, Nonfinitely based finite algebras derived from lattices, Ph. D. Dissertation, Uni. of California, Los Angeles 1979.