Remarks on pseudo MV-algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 5-19.

Voir la notice de l'article provenant de la source Library of Science

Pseudo MV-algebras (see e.g., [4, 6, 8]) are non-commutative extension of MV-algebras. We show that every pseudo MV-algebra is isomorphic to the algebra of action functions where the binary operation is function composition, zero is x ∧ y and unit is x. Then we define the so-called difference functions in pseudo MV-algebras and show how a pseudo MV-algebra can be reconstructed by them.
Keywords: pseudo MV-algebra, action function, guard function, difference functions
@article{DMGAA_2009_29_1_a0,
     author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav},
     title = {Remarks on pseudo {MV-algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a0/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Kolařík, Miroslav
TI  - Remarks on pseudo MV-algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2009
SP  - 5
EP  - 19
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a0/
LA  - en
ID  - DMGAA_2009_29_1_a0
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Kolařík, Miroslav
%T Remarks on pseudo MV-algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2009
%P 5-19
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a0/
%G en
%F DMGAA_2009_29_1_a0
Chajda, Ivan; Kolařík, Miroslav. Remarks on pseudo MV-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 29 (2009) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/DMGAA_2009_29_1_a0/

[1] S.L. Bloom, Z. Ésik and E. Manes, A Cayley theorem for Boolean algebras, Amer. Math. Monthly 97 (1990), 831-833.

[2] I. Chajda, A representation of the algebra of quasiordered logic by binary functions, Demonstratio Mathem. 27 (1994), 601-607.

[3] I. Chajda and H. Länger, Action algebras, Italian J. of Pure Appl. Mathem., submitted.

[4] I. Chajda and J. Kühr, Pseudo MV-algebras and meet-semilattices with sectionally antitone permutations, Math. Slovaca 56 (2006), 275-288.

[5] A. Dvurečenskij, Pseudo MV-algebras are intervals in l-groups, J. Aust. Math. Soc. 72 (3) (2002), 427-445.

[6] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices, An Algebraic Glimpse at Substructural Logics, Elsevier 2007.

[7] G. Georgescu and A. Iorgelescu, Pseudo MV-algebras, Multiple Valued Log. 6 (2001), 95-135.

[8] A.M.W Glass and W.C. Holland, Lattice-Ordered Groups, Kluwer Acad. Publ., Dordrecht-Boston-London 1989.

[9] P. Jipsen and C. Tsinakis, A survey of Residuated Lattices, Ordered Agebraic Structures (Martinez J., editor), Kluwer Academic Publishers, Dordrecht, 2002, 19-56.

[10] J. Kühr and F. Švrček, Operators on unital l-groups, preprint, 2007.

[11] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273.