Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 251-259
Voir la notice de l'article provenant de la source Library of Science
Bounded lattices with an antitone involution the complemented elements of which do not form a sublattice must contain two complemented elements such that not both their join and their meet are complemented. We distinguish (up to symmetry) eight cases and in each of these cases we present such a lattice of minimal cardinality.
Keywords:
bounded lattice, antitone involution, complemented element
@article{DMGAA_2008_28_2_a8,
author = {Chajda, Ivan and L\"anger, Helmut},
title = {Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {251--259},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/}
}
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice JO - Discussiones Mathematicae. General Algebra and Applications PY - 2008 SP - 251 EP - 259 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/ LA - en ID - DMGAA_2008_28_2_a8 ER -
%0 Journal Article %A Chajda, Ivan %A Länger, Helmut %T Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice %J Discussiones Mathematicae. General Algebra and Applications %D 2008 %P 251-259 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/ %G en %F DMGAA_2008_28_2_a8
Chajda, Ivan; Länger, Helmut. Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 251-259. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/