Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2008_28_2_a8, author = {Chajda, Ivan and L\"anger, Helmut}, title = {Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {251--259}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/} }
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice JO - Discussiones Mathematicae. General Algebra and Applications PY - 2008 SP - 251 EP - 259 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/ LA - en ID - DMGAA_2008_28_2_a8 ER -
%0 Journal Article %A Chajda, Ivan %A Länger, Helmut %T Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice %J Discussiones Mathematicae. General Algebra and Applications %D 2008 %P 251-259 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/ %G en %F DMGAA_2008_28_2_a8
Chajda, Ivan; Länger, Helmut. Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 251-259. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/
[1] G. Birkhoff, Lattice Theory, AMS, Providence, R. I., 1979.
[2] I. Chajda and H. Länger, Bounded lattices with antitone involution the complemented elements of which form a sublattice, J. Algebra Discrete Structures 6 (2008), 13-22.
[3] G. Grätzer, General Lattice Theory, Birkhäuser, Basel 1998.