Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 251-259.

Voir la notice de l'article provenant de la source Library of Science

Bounded lattices with an antitone involution the complemented elements of which do not form a sublattice must contain two complemented elements such that not both their join and their meet are complemented. We distinguish (up to symmetry) eight cases and in each of these cases we present such a lattice of minimal cardinality.
Keywords: bounded lattice, antitone involution, complemented element
@article{DMGAA_2008_28_2_a8,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {251--259},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 251
EP  - 259
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/
LA  - en
ID  - DMGAA_2008_28_2_a8
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 251-259
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/
%G en
%F DMGAA_2008_28_2_a8
Chajda, Ivan; Länger, Helmut. Minimal bounded lattices with an antitone involution the complemented elements of which do not form a sublattice. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 251-259. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a8/

[1] G. Birkhoff, Lattice Theory, AMS, Providence, R. I., 1979.

[2] I. Chajda and H. Länger, Bounded lattices with antitone involution the complemented elements of which form a sublattice, J. Algebra Discrete Structures 6 (2008), 13-22.

[3] G. Grätzer, General Lattice Theory, Birkhäuser, Basel 1998.