On the lattice of congruences on inverse semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 193-208.

Voir la notice de l'article provenant de la source Library of Science

Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences ρ_min, ρ_max, ρ^min and ρ^max on S and showed that ρθ = [ρ_min,ρ_max] and ρκ = [ρ^min,ρ^max]. Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if ρ_max is a distributive lattice congruence and ρ^max is a skew-ring congruence on S. If η (σ) is the least distributive lattice (resp. skew-ring) congruence on S then η ∩ σ is the least Clifford congruence on S.
Keywords: inverse semirings, trace, kernel, Clifford congruence, least Clifford congruence
@article{DMGAA_2008_28_2_a4,
     author = {Bhuniya, Anwesha and Bhuniya, Anjan},
     title = {On the lattice of congruences on inverse semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {193--208},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a4/}
}
TY  - JOUR
AU  - Bhuniya, Anwesha
AU  - Bhuniya, Anjan
TI  - On the lattice of congruences on inverse semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 193
EP  - 208
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a4/
LA  - en
ID  - DMGAA_2008_28_2_a4
ER  - 
%0 Journal Article
%A Bhuniya, Anwesha
%A Bhuniya, Anjan
%T On the lattice of congruences on inverse semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 193-208
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a4/
%G en
%F DMGAA_2008_28_2_a4
Bhuniya, Anwesha; Bhuniya, Anjan. On the lattice of congruences on inverse semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 2, pp. 193-208. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_2_a4/

[1] R. Feigenbaum, Kernels of orthodox semigroup homomorphisms, J. Austral. Math. Soc. 22 (A) (1976), 234-245.

[2] R. Feigenbaum, Regular semigroup congruences, Semigroup Forum 17 (4) (1979), 373-377.

[3] D.G. Green, The lattice of congruences on an inverse semigroup, Pacific J. Math. 57 (1975), 141-152.

[4] M.P. Grillet, Semirings with a completely simple additive Semigroup, J. Austral. Math. Soc. 20 (A) (1975), 257-267.

[5] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford 1995.

[6] S.K. Maity, Congruences on additive inverse semirings, Southeast Asian Bull. Math. 30 (2006).

[7] F. Pastijn and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (2) (1986), 607-633.

[8] M. Petrich, Congruences on Inverse Semigroups, Journal of Algebra 55 (1978), 231-256.

[9] M. Petrich, Inverse Semigroups, John Wiley Sons 1984.

[10] M. Petrich and N.R. Reilly, A network of congruences on an inverse semigroup, Trans. Amer. Math. Soc. 270 (1) (1982), 309-325.

[11] N.R. Reilly and H.E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360.

[12] H.E. Scheiblich, Kernels of inverse semigroup homomorphisms, J. Austral. Math. Soc. 18 (1974), 289-292.

[13] M.K. Sen, S. Ghosh and P. Mukhopadhyay, Congruences on inverse semirings, pp. 391-400 in: Algebras and Combinatorics (Hong Kong, 1997), Springer, Singapore 1999.

[14] M.K. Sen, S.K. Maity and K.P. Shum, On completely regular semirings, Bull. Cal. Math. Soc. 98 (4) (2006), 319-328.

[15] M.K. Sen, S.K. Maity and K.P. Shum, Clifford semirings and generalized Clifford semirings, Taiwanese Journal of Mathematics 9 (3) (2005), 433-444.