Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2008_28_1_a4, author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav and Radeleczki, S\'andor}, title = {Commutative directoids with sectionally antitone bijections}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {77--89}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/} }
TY - JOUR AU - Chajda, Ivan AU - Kolařík, Miroslav AU - Radeleczki, Sándor TI - Commutative directoids with sectionally antitone bijections JO - Discussiones Mathematicae. General Algebra and Applications PY - 2008 SP - 77 EP - 89 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/ LA - en ID - DMGAA_2008_28_1_a4 ER -
%0 Journal Article %A Chajda, Ivan %A Kolařík, Miroslav %A Radeleczki, Sándor %T Commutative directoids with sectionally antitone bijections %J Discussiones Mathematicae. General Algebra and Applications %D 2008 %P 77-89 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/ %G en %F DMGAA_2008_28_1_a4
Chajda, Ivan; Kolařík, Miroslav; Radeleczki, Sándor. Commutative directoids with sectionally antitone bijections. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/
[1] J.C. Abbott, Semi-Boolean algebras, Matem. Vestnik 4 (1967), 177-198.
[2] I. Chajda, Lattices and semilattices having an antitone bijection in any upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585.
[3] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo (Germany), 2003, ISBN 3-88538-226-1.
[4] I. Chajda and M. Kolařík, Directoids with sectionally antitone involutions and skew MV-algebras, Math. Bohemica 132 (2007), 407-422.
[5] I. Chajda and R. Radeleczki, Semilattices with sectionally antitone bijections, Novi Sad J. Math. 35 (2005), 93-101.
[6] B. Csákány, Characterization of regular varieties, Acta Sci. Math. Szeged 31 (1970), 187-189.
[7] J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra Universalis 3 (1973), 8-12.
[8] J. Ježek and R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49-69.
[9] V.M. Kopytov and Z.I. Dimitrov, On directed groups, Siberian Math. J. 30 (1989), 895-902. (Russian original: Sibirsk. Mat. Zh. 30 (6) (1988), 78-86.)
[10] S. Radeleczki, The congruence lattice of implication algebras, Math. Pannonica 3 (1992), 115-123.
[11] V. Snášel, λ-lattices, Math. Bohemica 122 (1997), 267-272.