Commutative directoids with sectionally antitone bijections
Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 77-89.

Voir la notice de l'article provenant de la source Library of Science

We study commutative directoids with a greatest element, which can be equipped with antitone bijections in every principal filter. These can be axiomatized as algebras with two binary operations satisfying four identities. A minimal subvariety of this variety is described.
Keywords: directoid, section antitone bijection, implication algebra, double implication algebra
@article{DMGAA_2008_28_1_a4,
     author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav and Radeleczki, S\'andor},
     title = {Commutative directoids with sectionally antitone bijections},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Kolařík, Miroslav
AU  - Radeleczki, Sándor
TI  - Commutative directoids with sectionally antitone bijections
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2008
SP  - 77
EP  - 89
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/
LA  - en
ID  - DMGAA_2008_28_1_a4
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Kolařík, Miroslav
%A Radeleczki, Sándor
%T Commutative directoids with sectionally antitone bijections
%J Discussiones Mathematicae. General Algebra and Applications
%D 2008
%P 77-89
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/
%G en
%F DMGAA_2008_28_1_a4
Chajda, Ivan; Kolařík, Miroslav; Radeleczki, Sándor. Commutative directoids with sectionally antitone bijections. Discussiones Mathematicae. General Algebra and Applications, Tome 28 (2008) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/DMGAA_2008_28_1_a4/

[1] J.C. Abbott, Semi-Boolean algebras, Matem. Vestnik 4 (1967), 177-198.

[2] I. Chajda, Lattices and semilattices having an antitone bijection in any upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585.

[3] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo (Germany), 2003, ISBN 3-88538-226-1.

[4] I. Chajda and M. Kolařík, Directoids with sectionally antitone involutions and skew MV-algebras, Math. Bohemica 132 (2007), 407-422.

[5] I. Chajda and R. Radeleczki, Semilattices with sectionally antitone bijections, Novi Sad J. Math. 35 (2005), 93-101.

[6] B. Csákány, Characterization of regular varieties, Acta Sci. Math. Szeged 31 (1970), 187-189.

[7] J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra Universalis 3 (1973), 8-12.

[8] J. Ježek and R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49-69.

[9] V.M. Kopytov and Z.I. Dimitrov, On directed groups, Siberian Math. J. 30 (1989), 895-902. (Russian original: Sibirsk. Mat. Zh. 30 (6) (1988), 78-86.)

[10] S. Radeleczki, The congruence lattice of implication algebras, Math. Pannonica 3 (1992), 115-123.

[11] V. Snášel, λ-lattices, Math. Bohemica 122 (1997), 267-272.