Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2007_27_2_a6, author = {Kwuida, L\'eonard}, title = {Prime ideal theorem for double {Boolean} algebras}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {263--275}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a6/} }
Kwuida, Léonard. Prime ideal theorem for double Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 263-275. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a6/
[1] G. Boole, An investigation into the Laws of Thought on which are founded the Mathematical Theories of Logic and Probabilities, Macmillan 1854, reprinted by Dover Publ. New York 1958.
[2] C. Herrmann, P. Luksch, M. Skorsky and R. Wille, Algebras of semiconcepts and double Boolean algebras, J. Heyn Klagenfurt, Contributions to General Algebra 13 (2001), 175-188.
[3] B. Ganter and R. Wille, Formal Concept Analysis. Mathematical Foundations, Springer 1999.
[4] L. Kwuida, Dicomplemented Lattices. A Contextual Generalization of Boolean Algebras, Shaker Verlag 2004.
[5] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.) Ordered Sets Reidel (1982), 445-470.
[6] R. Wille, Boolean Concept Logic, LNAI 1867 Springer (2000), 317-331.
[7] R. Wille, Boolean Judgement Logic, LNAI 2120 Springer (2001), 115-128.
[8] R. Wille, Preconcept algebras and generalized double Boolean algebras, LNAI 2961 Springer (2004), 1-13.