Prime ideal theorem for double Boolean algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 263-275.

Voir la notice de l'article provenant de la source Library of Science

Double Boolean algebras are algebras (D,⊓,⊔,⊲,⊳,⊥,⊤) of type (2,2,1,1,0,0). They have been introduced to capture the equational theory of the algebra of protoconcepts. A filter (resp. an ideal) of a double Boolean algebra D is an upper set F (resp. down set I) closed under ⊓ (resp. ⊔). A filter F is called primary if F ≠ ∅ and for all x ∈ D we have x ∈ F or x^⊲ ∈ F. In this note we prove that if F is a filter and I an ideal such that F ∩ I = ∅ then there is a primary filter G containing F such that G ∩ I = ∅ (i.e. the Prime Ideal Theorem for double Boolean algebras).
Keywords: double Boolean algebra, protoconcept algebra, concept algebra, weakly dicomplemented lattices
@article{DMGAA_2007_27_2_a6,
     author = {Kwuida, L\'eonard},
     title = {Prime ideal theorem for double {Boolean} algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {263--275},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a6/}
}
TY  - JOUR
AU  - Kwuida, Léonard
TI  - Prime ideal theorem for double Boolean algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2007
SP  - 263
EP  - 275
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a6/
LA  - en
ID  - DMGAA_2007_27_2_a6
ER  - 
%0 Journal Article
%A Kwuida, Léonard
%T Prime ideal theorem for double Boolean algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2007
%P 263-275
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a6/
%G en
%F DMGAA_2007_27_2_a6
Kwuida, Léonard. Prime ideal theorem for double Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 263-275. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a6/

[1] G. Boole, An investigation into the Laws of Thought on which are founded the Mathematical Theories of Logic and Probabilities, Macmillan 1854, reprinted by Dover Publ. New York 1958.

[2] C. Herrmann, P. Luksch, M. Skorsky and R. Wille, Algebras of semiconcepts and double Boolean algebras, J. Heyn Klagenfurt, Contributions to General Algebra 13 (2001), 175-188.

[3] B. Ganter and R. Wille, Formal Concept Analysis. Mathematical Foundations, Springer 1999.

[4] L. Kwuida, Dicomplemented Lattices. A Contextual Generalization of Boolean Algebras, Shaker Verlag 2004.

[5] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.) Ordered Sets Reidel (1982), 445-470.

[6] R. Wille, Boolean Concept Logic, LNAI 1867 Springer (2000), 317-331.

[7] R. Wille, Boolean Judgement Logic, LNAI 2120 Springer (2001), 115-128.

[8] R. Wille, Preconcept algebras and generalized double Boolean algebras, LNAI 2961 Springer (2004), 1-13.