Retracts and Q-independence
Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 235-243.

Voir la notice de l'article provenant de la source Library of Science

A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.
Keywords: general algebra, term function, Q-independence, M, I, S, S₀, A₁, G-independence, t-independence, retraction, retract, Stone algebra, skeleton and set of dense element of Stone algebra, Glivenko congruence
@article{DMGAA_2007_27_2_a4,
     author = {Chwastyk, Anna},
     title = {Retracts and {Q-independence}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a4/}
}
TY  - JOUR
AU  - Chwastyk, Anna
TI  - Retracts and Q-independence
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2007
SP  - 235
EP  - 243
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a4/
LA  - en
ID  - DMGAA_2007_27_2_a4
ER  - 
%0 Journal Article
%A Chwastyk, Anna
%T Retracts and Q-independence
%J Discussiones Mathematicae. General Algebra and Applications
%D 2007
%P 235-243
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a4/
%G en
%F DMGAA_2007_27_2_a4
Chwastyk, Anna. Retracts and Q-independence. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 235-243. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a4/

[1] R. Balbes and Ph. Dwinger, Distributive Lattices, Univ. Missouri Press, Columbia, Miss. 1974.

[2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, The Millennium Edition 2000.

[3] C.C. Chen and G. Grätzer, Stone lattices. I: Construction theorems, Can. J. Math. 21 (1969), 884-894.

[4] A. Chwastyk and K. Głazek, Remarks on Q-independence of Stone algebras, Math. Slovaca 56 (2) (2006), 181-197.

[5] K. Głazek, General notions of independence, pp. 112-128 in 'Advances in Algebra', World Scientific, Singapore 2003.

[6] K. Głazek, Independence with respect to family of mappings in abstract algebras, Dissertationes Math. 81 (1971).

[7] K. Głazek, Some old and new problems in the independence theory, Coll. Math. 42 (1979), 127-189.

[8] K. Głazek and S. Niwczyk, A new perspective on Q-independence, General Algebra and Applications, Shaker Verlag, Aacken 2000.

[9] K. Golema-Hartman, Exchange property and t-independence, Coll. Math. 36 (1976), 181-186.

[10] G. Grätzer, A new notion of independence in universal algebras, Colloq. Math. 17 (1967), 225-234.

[11] G. Grätzer, General Lattice Theory, Academic Press, New York 1978.

[12] G. Grätzer, Universal Algebra, second edition, Springer-Verlag, New York 1979.

[13] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Polon. Sci. (Ser. Sci. Math. Astr. Phys.) 6 (1958), 731-738.

[14] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23.

[15] E. Marczewski, Independence in algebras of sets and Boolean algebras, Fund. Math. 48 (1960), 135-145.

[16] E. Marczewski, Independance with respect to a family of mappings, Colloq. Math. 20 (1968), 11-17.

[17] J. Płonka and W. Poguntke, T-independence in distributive lattices, Colloq. Math. 36 (1976), 171-175.

[18] J. Schmidt, Eine algebraische Äquivalenz zum Auswahlaxiom, Fund. Math. 50 (1962), 485-496.

[19] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. 14 (3) (1964), 566-576.

[20] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-23.