@article{DMGAA_2007_27_2_a1,
author = {C\={i}rulis, J\={a}nis},
title = {Pseudocomplements in sum-ordered partial semirings},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {169--186},
year = {2007},
volume = {27},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a1/}
}
Cīrulis, Jānis. Pseudocomplements in sum-ordered partial semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 2, pp. 169-186. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_2_a1/
[1] G. Birkhoff, Lattice Theory, AMS Colloq. Publ. 25, Providence, Rhode Island 1967.
[2] T.S. Blyth, Pseudo-residuals in semigroups, J. London Math. Soc. 40 (1965), 441-454.
[3] J. Cīrulis, Quantifiers in semiring like logics, Proc. Latvian Acad. Sci. 57 B (2003), 87-92.
[4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ. and Ister Science, Dordrecht, Bratislava e.a., 2000.
[5] O. Frink, Representation of Boolean algebras, Bull. Amer. Math. Soc. 47 (1941), 755-756.
[6] O. Frink, Pseudo-complements in semilattices, Duke Math. J. 29 (1962), 505-514.
[7] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin, 1978.
[8] U. Hebisch and H.J. Weinert, Semirings. Algebraic Theory and Applications in Computer Science, World Scientific, Singapore e.a., 1993.
[9] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford 1995.
[10] M. Jackson and T. Stokes, Semilattice pseudo-complements on semigroups, Commun. Algebra 32 (2004), 2895-2918.
[11] M.F. Janowitz and C.S. Johnson, Jr., A note on Brouwerian and Glivenko semigroups, J. London Math. Soc. (2) 1 (1969), 733-736.
[12] E.G. Manes and D.B. Benson, The inverse semigroup of a sum-ordered semiring, Semigroup Forum 31 (1985), 129-152.
[13] T.P. Speed, A note on commutative semigroups, J. Austral. Math. Soc. 111 (1968), 731-736.
[14] U.M. Swamy and G.C. Rao e.a., Birkhoff centre of a poset, South Asia Bull. Math. 26 (2002), 509-516.