Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2007_27_1_a1, author = {Graczy\'nska, Ewa and Schweigert, Dietmar}, title = {The dimension of a variety}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {35--47}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/} }
TY - JOUR AU - Graczyńska, Ewa AU - Schweigert, Dietmar TI - The dimension of a variety JO - Discussiones Mathematicae. General Algebra and Applications PY - 2007 SP - 35 EP - 47 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/ LA - en ID - DMGAA_2007_27_1_a1 ER -
Graczyńska, Ewa; Schweigert, Dietmar. The dimension of a variety. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/
[1] G. Birkhoff, On the structure of abstract algebras, J. Proc. Cambridge Phil. Soc. 31 (1935), 433-454.
[2] P.M. Cohn, Universal Algebra, Reidel, 1981 Dordreht.
[3] K. Denecke and J. Koppitz, M-solid varieties of algebras, Advances in Mathematics, Vol. 10, Springer 2006.
[4] K. Denecke and S.L.Wismath, Hyperidentities and Clones, Gordon Breach, 2000, ISBN 90-5699-235-X. ISSN 1041-5394.
[5] T. Evans, The lattice of semigroups varieties, Semigroup Forum 2 (1971), 1-43.
[6] Ch.F. Fennemore, All varieties of bands, Ph.D. dissertation, Pensylvania State University 1969.
[7] Ch.F. Fennemore, All varieties of bands I, Mathematische Nachrichten 48 (1971), 237-252.
[8] J.A. Gerhard, The lattice of equational classes of idempotent semigroups, J. of Algebra 15 (1970), 195-224.
[9] E. Graczyńska, Universal algebra via tree operads, Opole 2000, ISSN 1429-6063, ISBN 83-88492-75-6.
[10] E. Graczyńska and D. Schweigert, Hyperidentities of a given type, Algebra Universalis 27 (1990), 305-318.
[11] E. Graczyńska and D. Schweigert, Derived and fluid varieties, in print.
[12] G. Grätzer, Universal Algebra. 2nd ed., Springer, New York 1979.
[13] R. McKenzie, G.F. McNulty and W. Taylor, Algebras, Lattices, Varieties, vol. I, 1987, ISBN 0-534-07651-3.
[14] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247.
[15] J. Płonka, Proper and inner hypersubstitutions of varieties, pp. 106-116 in: 'Proceedings of the International Conference Summer School on General Algebra and Ordered Sets', Olomouc 1994.
[16] D. Schweigert, Hyperidentities, pp. 405-506 in: Algebras and Orders, I.G. Rosenberg and G. Sabidussi, Kluwer Academic Publishers, 1993, ISBN 0-7923-2143-X.
[17] D. Schweigert, On derived varieties, Discussiones Mathematicae Algebra and Stochastic Methods 18 (1998), 17-26.