The dimension of a variety
Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 35-47

Voir la notice de l'article provenant de la source Library of Science

Derived varieties were invented by P. Cohn in [4]. Derived varieties of a given type were invented by the authors in [10]. In the paper we deal with the derived variety V_σ of a given variety, by a fixed hypersubstitution σ. We introduce the notion of the dimension of a variety as the cardinality κ of the set of all proper derived varieties of V included in V.
Keywords: derived algebras, derived varieties, the dimension of a variety
@article{DMGAA_2007_27_1_a1,
     author = {Graczy\'nska, Ewa and Schweigert, Dietmar},
     title = {The dimension of a variety},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/}
}
TY  - JOUR
AU  - Graczyńska, Ewa
AU  - Schweigert, Dietmar
TI  - The dimension of a variety
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2007
SP  - 35
EP  - 47
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/
LA  - en
ID  - DMGAA_2007_27_1_a1
ER  - 
%0 Journal Article
%A Graczyńska, Ewa
%A Schweigert, Dietmar
%T The dimension of a variety
%J Discussiones Mathematicae. General Algebra and Applications
%D 2007
%P 35-47
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/
%G en
%F DMGAA_2007_27_1_a1
Graczyńska, Ewa; Schweigert, Dietmar. The dimension of a variety. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/