The dimension of a variety
Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 35-47.

Voir la notice de l'article provenant de la source Library of Science

Derived varieties were invented by P. Cohn in [4]. Derived varieties of a given type were invented by the authors in [10]. In the paper we deal with the derived variety V_σ of a given variety, by a fixed hypersubstitution σ. We introduce the notion of the dimension of a variety as the cardinality κ of the set of all proper derived varieties of V included in V.
Keywords: derived algebras, derived varieties, the dimension of a variety
@article{DMGAA_2007_27_1_a1,
     author = {Graczy\'nska, Ewa and Schweigert, Dietmar},
     title = {The dimension of a variety},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/}
}
TY  - JOUR
AU  - Graczyńska, Ewa
AU  - Schweigert, Dietmar
TI  - The dimension of a variety
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2007
SP  - 35
EP  - 47
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/
LA  - en
ID  - DMGAA_2007_27_1_a1
ER  - 
%0 Journal Article
%A Graczyńska, Ewa
%A Schweigert, Dietmar
%T The dimension of a variety
%J Discussiones Mathematicae. General Algebra and Applications
%D 2007
%P 35-47
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/
%G en
%F DMGAA_2007_27_1_a1
Graczyńska, Ewa; Schweigert, Dietmar. The dimension of a variety. Discussiones Mathematicae. General Algebra and Applications, Tome 27 (2007) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/DMGAA_2007_27_1_a1/

[1] G. Birkhoff, On the structure of abstract algebras, J. Proc. Cambridge Phil. Soc. 31 (1935), 433-454.

[2] P.M. Cohn, Universal Algebra, Reidel, 1981 Dordreht.

[3] K. Denecke and J. Koppitz, M-solid varieties of algebras, Advances in Mathematics, Vol. 10, Springer 2006.

[4] K. Denecke and S.L.Wismath, Hyperidentities and Clones, Gordon Breach, 2000, ISBN 90-5699-235-X. ISSN 1041-5394.

[5] T. Evans, The lattice of semigroups varieties, Semigroup Forum 2 (1971), 1-43.

[6] Ch.F. Fennemore, All varieties of bands, Ph.D. dissertation, Pensylvania State University 1969.

[7] Ch.F. Fennemore, All varieties of bands I, Mathematische Nachrichten 48 (1971), 237-252.

[8] J.A. Gerhard, The lattice of equational classes of idempotent semigroups, J. of Algebra 15 (1970), 195-224.

[9] E. Graczyńska, Universal algebra via tree operads, Opole 2000, ISSN 1429-6063, ISBN 83-88492-75-6.

[10] E. Graczyńska and D. Schweigert, Hyperidentities of a given type, Algebra Universalis 27 (1990), 305-318.

[11] E. Graczyńska and D. Schweigert, Derived and fluid varieties, in print.

[12] G. Grätzer, Universal Algebra. 2nd ed., Springer, New York 1979.

[13] R. McKenzie, G.F. McNulty and W. Taylor, Algebras, Lattices, Varieties, vol. I, 1987, ISBN 0-534-07651-3.

[14] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247.

[15] J. Płonka, Proper and inner hypersubstitutions of varieties, pp. 106-116 in: 'Proceedings of the International Conference Summer School on General Algebra and Ordered Sets', Olomouc 1994.

[16] D. Schweigert, Hyperidentities, pp. 405-506 in: Algebras and Orders, I.G. Rosenberg and G. Sabidussi, Kluwer Academic Publishers, 1993, ISBN 0-7923-2143-X.

[17] D. Schweigert, On derived varieties, Discussiones Mathematicae Algebra and Stochastic Methods 18 (1998), 17-26.