Distributive ordered sets and relative pseudocomplements
Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 163-181

Voir la notice de l'article provenant de la source Library of Science

Brouwerian ordered sets generalize Brouwerian lattices. The aim of this paper is to characterize (α)-complete Brouwerian ordered sets in a manner similar to that used previously for pseudocomplemented, Stone, Boolean and distributive ordered sets. The sublattice (G(P)) in the Dedekind-Mac Neille completion (DM(P)) of an ordered set (P) generated by (P) is said to be the characteristic lattice of (P). We can define a stronger notion of Brouwerianicity by demanding that both (P) and (G(P)) be Brouwerian. It turns out that the two concepts are the same for finite ordered sets. Further, the so-called antiblocking property of distributive lattices is generalized to distributive ordered sets.
Keywords: Brouwerian ordered set, distributive ordered set, relative pseudocomplement
@article{DMGAA_2006_26_2_a2,
     author = {Niederle, Josef},
     title = {Distributive ordered sets and relative pseudocomplements},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {163--181},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/}
}
TY  - JOUR
AU  - Niederle, Josef
TI  - Distributive ordered sets and relative pseudocomplements
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2006
SP  - 163
EP  - 181
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/
LA  - en
ID  - DMGAA_2006_26_2_a2
ER  - 
%0 Journal Article
%A Niederle, Josef
%T Distributive ordered sets and relative pseudocomplements
%J Discussiones Mathematicae. General Algebra and Applications
%D 2006
%P 163-181
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/
%G en
%F DMGAA_2006_26_2_a2
Niederle, Josef. Distributive ordered sets and relative pseudocomplements. Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 163-181. http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/