Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2006_26_2_a2, author = {Niederle, Josef}, title = {Distributive ordered sets and relative pseudocomplements}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {163--181}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/} }
TY - JOUR AU - Niederle, Josef TI - Distributive ordered sets and relative pseudocomplements JO - Discussiones Mathematicae. General Algebra and Applications PY - 2006 SP - 163 EP - 181 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/ LA - en ID - DMGAA_2006_26_2_a2 ER -
Niederle, Josef. Distributive ordered sets and relative pseudocomplements. Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 163-181. http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/
[1] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge 1990.
[2] M. Erné, Distributive laws for concept lattices, Algebra Universalis 30 (1993), 538-580
[3] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin 1978.
[4] R. Halaš, Pseudocomplemented ordered sets, Archivum Math. (Brno) 29 (1993), 153-160
[5] J. Larmerová and J. Rachůnek, Translations of distributive and modular ordered sets, Acta Univ. Palack. Olom., Math. 27 (1988), 13-23
[6] J. Niederle, Boolean and distributive ordered sets: characterization and representation by sets, Order 12 (1995), 189-210
[7] J. Niederle, Identities in ordered sets, Order 15 (1999), 271-278
[8] J. Niederle, Semimodularity and irreducible elements, Acta Sci. Math. (Szeged) 64 (1998), 351-356
[9] J. Niederle, On pseudocomplemented and Stone ordered sets, Order 18 (2001), 161-170
[10] J. Niederle, On pseudocomplemented and Stone ordered sets, addendum, Order 20 (2003), 347-349
[11] J. Niederle, On infinitely distributive ordered sets, Math. Slovaca 55 (2005), 495-502
[12] G. Szász, Einführung in die Verbandstheorie, Akadémiai Kiadó, Budapest 1962.