Distributive ordered sets and relative pseudocomplements
Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 163-181.

Voir la notice de l'article provenant de la source Library of Science

Brouwerian ordered sets generalize Brouwerian lattices. The aim of this paper is to characterize (α)-complete Brouwerian ordered sets in a manner similar to that used previously for pseudocomplemented, Stone, Boolean and distributive ordered sets. The sublattice (G(P)) in the Dedekind-Mac Neille completion (DM(P)) of an ordered set (P) generated by (P) is said to be the characteristic lattice of (P). We can define a stronger notion of Brouwerianicity by demanding that both (P) and (G(P)) be Brouwerian. It turns out that the two concepts are the same for finite ordered sets. Further, the so-called antiblocking property of distributive lattices is generalized to distributive ordered sets.
Keywords: Brouwerian ordered set, distributive ordered set, relative pseudocomplement
@article{DMGAA_2006_26_2_a2,
     author = {Niederle, Josef},
     title = {Distributive ordered sets and relative pseudocomplements},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {163--181},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/}
}
TY  - JOUR
AU  - Niederle, Josef
TI  - Distributive ordered sets and relative pseudocomplements
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2006
SP  - 163
EP  - 181
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/
LA  - en
ID  - DMGAA_2006_26_2_a2
ER  - 
%0 Journal Article
%A Niederle, Josef
%T Distributive ordered sets and relative pseudocomplements
%J Discussiones Mathematicae. General Algebra and Applications
%D 2006
%P 163-181
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/
%G en
%F DMGAA_2006_26_2_a2
Niederle, Josef. Distributive ordered sets and relative pseudocomplements. Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 2, pp. 163-181. http://geodesic.mathdoc.fr/item/DMGAA_2006_26_2_a2/

[1] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge 1990.

[2] M. Erné, Distributive laws for concept lattices, Algebra Universalis 30 (1993), 538-580

[3] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin 1978.

[4] R. Halaš, Pseudocomplemented ordered sets, Archivum Math. (Brno) 29 (1993), 153-160

[5] J. Larmerová and J. Rachůnek, Translations of distributive and modular ordered sets, Acta Univ. Palack. Olom., Math. 27 (1988), 13-23

[6] J. Niederle, Boolean and distributive ordered sets: characterization and representation by sets, Order 12 (1995), 189-210

[7] J. Niederle, Identities in ordered sets, Order 15 (1999), 271-278

[8] J. Niederle, Semimodularity and irreducible elements, Acta Sci. Math. (Szeged) 64 (1998), 351-356

[9] J. Niederle, On pseudocomplemented and Stone ordered sets, Order 18 (2001), 161-170

[10] J. Niederle, On pseudocomplemented and Stone ordered sets, addendum, Order 20 (2003), 347-349

[11] J. Niederle, On infinitely distributive ordered sets, Math. Slovaca 55 (2005), 495-502

[12] G. Szász, Einführung in die Verbandstheorie, Akadémiai Kiadó, Budapest 1962.