Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2006_26_1_a2, author = {Waldhauser, Tam\'as}, title = {Almost associative operations generating a minimal clone}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {45--73}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2006_26_1_a2/} }
TY - JOUR AU - Waldhauser, Tamás TI - Almost associative operations generating a minimal clone JO - Discussiones Mathematicae. General Algebra and Applications PY - 2006 SP - 45 EP - 73 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2006_26_1_a2/ LA - en ID - DMGAA_2006_26_1_a2 ER -
Waldhauser, Tamás. Almost associative operations generating a minimal clone. Discussiones Mathematicae. General Algebra and Applications, Tome 26 (2006) no. 1, pp. 45-73. http://geodesic.mathdoc.fr/item/DMGAA_2006_26_1_a2/
[1] V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov and B.A. Romov, Galois theory for Post algebras I-II, Kibernetika (Kiev) 3 (1969), 1-10; 5 (1969), 1-9 (Russian).
[2] A.C. Climescu, Études sur la théorie des systèmes multiplicatifs uniformes I. L'indice de non-associativité, Bull. École Polytech. Jassy 2 (1947), 347-371 (French).
[3] A.C. Climescu, L'indépendance des conditions d'associativité, Bull. Inst. Polytech. Jassy 1 (1955), 1-9 (Romanian).
[4] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6 (3) (1983), 227-238.
[5] B. Csákány, On conservative minimal operations, Lectures in Universal Algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 43 (1986), 49-60.
[6] B. Csákány and T. Waldhauser, Associative spectra of binary operations, Mult.-Valued Log. 5 (3) (2000), 175-200.
[7] A. Drápal and T. Kepka, Sets of associative triples, Europ. J. Combinatorics 6 (1985), 227-231.
[8] D. Geiger, Closed systems and functions of predicates, Pacific J. Math. 27 (1968), 95-100.
[9] P. Hájek, Die Szászschen Gruppoide, Mat.-Fys. Časopis Sloven. Akad. Vied 15 (1) (1965), 15-42 (German).
[10] P. Hájek, Berichtigung zu meiner arbeit 'Die Szászschen Gruppoide', Mat.-Fys. Časopis Sloven. Akad. Vied 15 (4) (1965) 331 (German).
[11] J. Ježek and R.W. Quackenbush, Minimal clones of conservative functions, Internat. J. Algebra Comput. 5 (6) (1995), 615-630.
[12] K.A. Kearnes, Minimal clones with abelian representations, Acta Sci. Math. (Szeged) 61 (1-4) (1995), 59-76.
[13] K.A. Kearnes and Á. Szendrei, The classification of commutative minimal clones, Discuss. Math. Algebra and Stochastic Methods 19 (1) (1999), 147-178.
[14] T. Kepka and M. Trch, Groupoids and the associative law I. (Associative triples), Acta Univ. Carol. Math. Phys. 33 (1) (1992), 69-86.
[15] T. Kepka and M. Trch, Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carol. Math. Phys. 34 (1) (1993), 67-83.
[16] T. Kepka and M. Trch, Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carol. Math. Phys. 36 (1) (1995), 17-30.
[17] T. Kepka and M. Trch, Groupoids and the associative law IV. (Szász-Hájek groupoids of type (a,b,a)), Acta Univ. Carol. Math. Phys. 35 (1) (1994), 31-42.
[18] T. Kepka and M. Trch, Groupoids and the associative law V. (Szász-Hájek groupoids of type (a,a,b)), Acta Univ. Carol. Math. Phys. 36 (1) (1995), 31-44.
[19] T. Kepka and M. Trch, Groupoids and the associative law VI. (Szász-Hájek groupoids of type (a,b,c)), Acta Univ. Carol. Math. Phys. 38 (1) (1997), 13-22.
[20] L. Lévai and P.P. Pálfy, On binary minimal clones, Acta Cybernet. 12 (3) (1996), 279-294.
[21] P.P. Pálfy, Minimal clones, Preprint of the Math. Inst. Hungarian Acad. Sci. 27/1984.
[22] J. Płonka, On groups in which idempotent reducts form a chain, Colloq. Math. 29 (1974), 87-91.
[23] J. Płonka, On k-cyclic groupoids, Math. Japon. 30 (3) (1985), 371-382.
[24] E. Post, The two-valued iterative systems of mathematical logic, Annals of Mathematics Studies, No. 5, Princeton University Press, Princeton 1941.
[25] I.G. Rosenberg, Minimal clones I. The five types, Lectures in Universal Algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 43 (1986), 405-427.
[26] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences, 2005.
[27] G. Szász, Die Unabhängigkeit der Assoziativitätsbedingungen, Acta Sci. Math. (Szeged) 15 (1953), 20-28 (German).
[28] B. Szczepara, Minimal clones generated by groupoids, Ph.D. Thesis, Université de Montréal 1995.
[29] Á. Szendrei, Clones in Universal Algebra, Séminaire de Mathématiques Supérieures, 99, Presses de L'Université de Montréal 1986.
[30] M.B. Szendrei, On closed sets of term functions on bands, Semigroups (Proc. Conf., Math. Res. Inst., Oberwolfach, 1978), pp. 156-181, Lecture Notes in Math., 855, Springer, Berlin 1981.
[31] T. Waldhauser, Minimal clones generated by majority operations, Algebra Universalis 44 (1,2) (2000), 15-26.
[32] T. Waldhauser, Minimal clones with weakly abelian representations, Acta Sci. Math. (Szeged) 69 (3,4) (2003), 505-521.