Subdirectly irreducible non-idempotent left symmetric left distributive groupoids
Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 235-257.

Voir la notice de l'article provenant de la source Library of Science

We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.
Keywords: groupoid, left distributive, left symmetric, subdirectly irreducible
@article{DMGAA_2005_25_2_a5,
     author = {Je\v{r}\'abek, Emil and Kepka, Tom\'a\v{s} and Stanovsk\'y, David},
     title = {Subdirectly irreducible non-idempotent left symmetric left distributive groupoids},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {235--257},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a5/}
}
TY  - JOUR
AU  - Jeřábek, Emil
AU  - Kepka, Tomáš
AU  - Stanovský, David
TI  - Subdirectly irreducible non-idempotent left symmetric left distributive groupoids
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2005
SP  - 235
EP  - 257
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a5/
LA  - en
ID  - DMGAA_2005_25_2_a5
ER  - 
%0 Journal Article
%A Jeřábek, Emil
%A Kepka, Tomáš
%A Stanovský, David
%T Subdirectly irreducible non-idempotent left symmetric left distributive groupoids
%J Discussiones Mathematicae. General Algebra and Applications
%D 2005
%P 235-257
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a5/
%G en
%F DMGAA_2005_25_2_a5
Jeřábek, Emil; Kepka, Tomáš; Stanovský, David. Subdirectly irreducible non-idempotent left symmetric left distributive groupoids. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 235-257. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a5/

[1] S. Burris and H.P. Sankappanavar, A course in universal algebra, GTM 78, Springer 1981.

[2] P. Dehornoy, Braids and self-distributivity, Progress in Math. 192, Birkhäuser Basel 2000.

[3] D. Joyce, Simple quandles, J. Algebra 79 (1982), 307-318.

[4] T. Kepka, Non-idempotent left symmetric left distributive groupoids, Comment. Math. Univ. Carolinae 35 (1994), 181-186.

[5] T. Kepka and P. Nemec, Selfdistributive groupoids. A1. Non-indempotent left distributive groupoids, Acta Univ. Carolin. Math. Phys. 44/1 (2003), 3-94.

[6] H. Nagao, A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352.

[7] B. Roszkowska-Lech, Subdirectly irreducible symmetric idempotent entropic groupoids, Demonstratio Math. 32/3 (1999), 469-484.

[8] D. Stanovský, A survey of left symmetric left distributive groupoids, available at http://www.karlin.mff.cuni.cz/~stanovsk/math/survey.pdf.

[9] D. Stanovský, Left symmetric left distributive operations on a group, Algebra Universalis 54/1 (2003), 97-103.

[10] M. Takasaki, Abstractions of symmetric functions, Tôhoku Math. Journal 49 (1943), 143-207 (Japanese).