Presolid varieties of n-semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 221-233.

Voir la notice de l'article provenant de la source Library of Science

he class of all M-solid varieties of a given type t forms a complete sublattice of the lattice ℒ(τ) of all varieties of algebrasof type t. This gives a tool for a better description of the lattice ℒ(τ) by characterization of complete sublattices. In particular, this was done for varieties of semigroups by L. Polák ([10]) as well as by Denecke and Koppitz ([4], [5]). Denecke and Hounnon characterized M-solid varieties of semirings ([3]) and M-solid varieties of groups were characterized by Koppitz ([9]). In the present paper we will do it for varieties of n-semigroups. An n-semigroup is an algebra of type (n), where the operation satisfies the [i,j]-associative laws for 1 ≤ i ≤ j ≤ n, introduced by Dörtnte ([2]). It is clear that the notion of a 2-semigroup is the same as the notion of a semigroup. Here we will consider the case n ≥ 3.
Keywords: hypersubstitution, presolid, n-semigroup
@article{DMGAA_2005_25_2_a4,
     author = {Chantasartrassmee, Avapa and Koppitz, J\"org},
     title = {Presolid varieties of n-semigroups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {221--233},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a4/}
}
TY  - JOUR
AU  - Chantasartrassmee, Avapa
AU  - Koppitz, Jörg
TI  - Presolid varieties of n-semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2005
SP  - 221
EP  - 233
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a4/
LA  - en
ID  - DMGAA_2005_25_2_a4
ER  - 
%0 Journal Article
%A Chantasartrassmee, Avapa
%A Koppitz, Jörg
%T Presolid varieties of n-semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2005
%P 221-233
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a4/
%G en
%F DMGAA_2005_25_2_a4
Chantasartrassmee, Avapa; Koppitz, Jörg. Presolid varieties of n-semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 2, pp. 221-233. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_2_a4/

[1] V. Budd, K. Denecke and S.L. Wismath, Short-solid superassociative type (n) varieties, East-West J. of Mathematics 3 (2) (2001), 129-145.

[2] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19.

[3] K. Denecke and Hounnon, All solid varieties of semirings, Journal of Algebra 248 (2002), 107-117.

[4] K. Denecke and J. Koppitz, Pre-solid varieties of semigroups, Archivum Mathematicum 31 (1995), 171-181.

[5] K. Denecke and J. Koppitz, Finite monoids of hypersubstitutions of type t = (2), Semigroup Forum 56 (1998), 265-275.

[6] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9 (1995), 117-126.

[7] K. Denecke, J. Koppitz and S.L. Wismath, Solid varieties of arbitrary type, Algebra Universalis 48 (2002), 357-378.

[8] K. Denecke and S.L. Wismath, Hyperidentities and clones, Gordon and Breach Scientific Publisher, 2000.

[9] J. Koppitz, Hypersubstitutions and groups, Novi Sad J. Math. 34 (2) (2004), 127-139.

[10] L. Polák, All solid varieties of semigroups, Journal of Algebra 219 (1999), 421-436.

[11] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proceedings of the International Conference: 'Summer School on General Algebra and Ordered Sets', Olomouc 1994', Palacký University, Olomouc 1994, 106-115.