Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2005_25_1_a3, author = {Denecke, Klaus and Jampachon, Prakit}, title = {T-Varieties and {Clones} of {T-terms}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {89--101}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a3/} }
TY - JOUR AU - Denecke, Klaus AU - Jampachon, Prakit TI - T-Varieties and Clones of T-terms JO - Discussiones Mathematicae. General Algebra and Applications PY - 2005 SP - 89 EP - 101 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a3/ LA - en ID - DMGAA_2005_25_1_a3 ER -
Denecke, Klaus; Jampachon, Prakit. T-Varieties and Clones of T-terms. Discussiones Mathematicae. General Algebra and Applications, Tome 25 (2005) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/DMGAA_2005_25_1_a3/
[1] G. Birkhoff and J. D. Lipson, Heterogeneous algebra, J. Combin. Theory 8 (1970), 115-133.
[2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981.
[3] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327-335.
[4] I. Chajda, K. Denecke and S. L. Wismath, A characterization of P-compatible varieties, Preprint 2004.
[5] W. Chromik, Externally compatible identities of algebras, Demonstratio Math. 23 (1990), 345-355.
[6] K. Denecke and L. Freiberg, The algebra of full terms, preprint 2003.
[7] K. Denecke and K. Ha kowska, P-compatible hypersubstitutions and MP-solid varieties, Studia Logica 64 (2000), 355-363.
[8] K. Denecke, P. Jampachon, Clones of N-full terms, Algebra and Discrete Math. (2004), no. 4, 1-11.
[9] K. Denecke, P. Jampachon, N-Full varieties and clones of n-full terms, Southeast Asian Bull. Math. 25 (2005), 1-14.
[10] K. Denecke, P. Jampachon and S. L. Wismath, Clones of n-ary algebras, J. Appl. Algebra Discrete Struct. 1 (2003), 141-158.
[11] K. Denecke, M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9 (1995), 117-126.
[12] K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman Hall/CRC, Boca Raton, London, New York, Washington D.C. 2002.
[13] K. Denecke and S. L. Wismath, Galois connections and complete sublattices, 'Galois Connections and Applications', Kluwer Academic Publ., Dordrecht 2004, 211-230.
[14] K. Denecke and S. L. Wismath, A characterization of k-normal varieties, Algebra Universalis 51 (2004), 395-409.
[15] E. Graczyńska, On Normal and regular identities and hyperidentities, ' Universal and Applied Algebra', World Scientific Publ. Co., Singapore 1989, 107-135.
[16] P.J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115-132.
[17] A. Hiller, P-Compatible Hypersubstitutionen und Hyperidentitäten, Diplomarbeit, Potsdam 1996.
[18] H.-J. Hoehnke and J. Schreckenberger, Partial Algebras and their Theories, Manuscript 2005.
[19] I.I. Melnik, Nilpotent shifts of varieties, (Russian), Mat. Zametki 14 (1973), 703-712, (English translation in: Math. Notes 14 (1973), 962-966).
[20] J. Płonka, On varieties of algebras defined by identities of special forms, Houston Math. J. 14 (1988), 253-263.
[21] J. Płonka, P-compatible identities and their applications to classical algebras, Math. Slovaca 40 (1990), 21-30.
[22] B. Schein and V. S. Trochimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979), 1-64.
[23] W. Taylor, Hyperidentities and Hypervarieties, Aequat. Math. 23 (1981), 111-127.