Convergence with a regulator in directed groups
Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 211-223.

Voir la notice de l'article provenant de la source Library of Science

There is defined and studied a convergence with a fixed regulator u in directed groups. A u-Cauchy completion of an integrally closed directed group is constructed.
Keywords: convergent sequence, fundamental sequence, Cauchy completion, integrally closed directed group, convergence regulator, vector lattice
@article{DMGAA_2004_24_2_a4,
     author = {\v{C}ern\'ak, \v{S}tefan},
     title = {Convergence with a regulator in directed groups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {211--223},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a4/}
}
TY  - JOUR
AU  - Černák, Štefan
TI  - Convergence with a regulator in directed groups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2004
SP  - 211
EP  - 223
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a4/
LA  - en
ID  - DMGAA_2004_24_2_a4
ER  - 
%0 Journal Article
%A Černák, Štefan
%T Convergence with a regulator in directed groups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2004
%P 211-223
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a4/
%G en
%F DMGAA_2004_24_2_a4
Černák, Štefan. Convergence with a regulator in directed groups. Discussiones Mathematicae. General Algebra and Applications, Tome 24 (2004) no. 2, pp. 211-223. http://geodesic.mathdoc.fr/item/DMGAA_2004_24_2_a4/

[1] S. Černák and J. Lihova, Convergence with a regulator in lattice ordered groups, Tatra Mt. Math. Publ. to appear.

[2] M.R. Darnel, Theory of Lattice-Ordered Groups, M. Dekker, Inc., New York 1995

[3] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press., Oxford 1963.

[4] A.M.W. Glass, Partially Ordered Groups, World Scientific Publ. Co., River Edge, NJ, 1999.

[5] W.A.J. Luxemburg and A. C. Zaanen, Riesz Spaces, vol. I, North-Holland, Amsterdam-London 1971.

[6] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff Sci. Publ., Groningen 1967 (The original Russian edition in: Fizmatgiz, Moskow 1961).