Adjointness between theories and strict theories
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 163-212.

Voir la notice de l'article provenant de la source Library of Science

The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a dhts-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities ox ≈ o and xo ≈ o, where o and i are the elements selected by the 0-ary operation symbols.
Keywords: symmetric monoidal category, dhts-category, partial theory, adjoint functor
@article{DMGAA_2003_23_2_a6,
     author = {Vogel, Hans-J\"urgen},
     title = {Adjointness between theories and strict theories},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {163--212},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/}
}
TY  - JOUR
AU  - Vogel, Hans-Jürgen
TI  - Adjointness between theories and strict theories
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 163
EP  - 212
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/
LA  - en
ID  - DMGAA_2003_23_2_a6
ER  - 
%0 Journal Article
%A Vogel, Hans-Jürgen
%T Adjointness between theories and strict theories
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 163-212
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/
%G en
%F DMGAA_2003_23_2_a6
Vogel, Hans-Jürgen. Adjointness between theories and strict theories. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 163-212. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/

[1] G. Birkhoff and J.D. Lipson, Heterogeneous algebras, J. Combinat. Theory 8 (1970), 115-133.

[2] L. Budach and H.-J. Hoehnke, Automaten und Funktoren, Akademie Verlag, Berlin 1975 (the part: 'Allgemeine Algebra der Automaten', by H.-J. Hoehnke).

[3] S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. Categorical Algebra (La Jolla, 1965), Springer, New York 1966, 421-562.

[4] P.J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115-132.

[5] H.-J. Hoehnke, On partial algebras, Colloq. Soc. J. Bolyai, Vol. 29, 'Universal Algebra; Esztergom (Hungary) 1977', North-Holland, Amsterdam, 1981, 373-412.

[6] G.M. Kelly, On MacLane's conditions for coherence of natural associativities, commutativities, etc, J. Algebra 4 (1964), 397-402.

[7] G.M. Kelly and S. MacLane, Coherence in closed categories, + Erratum, Pure Appl. Algebra 1 (1971), 97-140, 219.

[8] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872.

[9] S. MacLane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28-46.

[10] J. Schreckenberger, Über die zu monoidalen Kategorien adjungierten Kronecker-Kategorien, Dissertation (A), Päd. Hochschule, Potsdam 1978.

[11] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, Preprint P-12/80, Zentralinst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1980.

[12] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Disseration (B), Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam 1984.

[13] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, Report R-Math-06/84, Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1984.

[14] H.-J. Vogel, On functors between dht∇ -symmetric categories, Discuss. Math.-Algebra Stochastic Methods, 18 (1998), 131-147.

[15] H.-J. Vogel, On properties of dht∇ -symmetric categories, Contributions to General Algebra 11 (1999), 211-223.