Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2003_23_2_a6, author = {Vogel, Hans-J\"urgen}, title = {Adjointness between theories and strict theories}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {163--212}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/} }
TY - JOUR AU - Vogel, Hans-Jürgen TI - Adjointness between theories and strict theories JO - Discussiones Mathematicae. General Algebra and Applications PY - 2003 SP - 163 EP - 212 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/ LA - en ID - DMGAA_2003_23_2_a6 ER -
Vogel, Hans-Jürgen. Adjointness between theories and strict theories. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 163-212. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/
[1] G. Birkhoff and J.D. Lipson, Heterogeneous algebras, J. Combinat. Theory 8 (1970), 115-133.
[2] L. Budach and H.-J. Hoehnke, Automaten und Funktoren, Akademie Verlag, Berlin 1975 (the part: 'Allgemeine Algebra der Automaten', by H.-J. Hoehnke).
[3] S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. Categorical Algebra (La Jolla, 1965), Springer, New York 1966, 421-562.
[4] P.J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115-132.
[5] H.-J. Hoehnke, On partial algebras, Colloq. Soc. J. Bolyai, Vol. 29, 'Universal Algebra; Esztergom (Hungary) 1977', North-Holland, Amsterdam, 1981, 373-412.
[6] G.M. Kelly, On MacLane's conditions for coherence of natural associativities, commutativities, etc, J. Algebra 4 (1964), 397-402.
[7] G.M. Kelly and S. MacLane, Coherence in closed categories, + Erratum, Pure Appl. Algebra 1 (1971), 97-140, 219.
[8] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872.
[9] S. MacLane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28-46.
[10] J. Schreckenberger, Über die zu monoidalen Kategorien adjungierten Kronecker-Kategorien, Dissertation (A), Päd. Hochschule, Potsdam 1978.
[11] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, Preprint P-12/80, Zentralinst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1980.
[12] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Disseration (B), Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam 1984.
[13] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, Report R-Math-06/84, Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1984.
[14] H.-J. Vogel, On functors between dht∇ -symmetric categories, Discuss. Math.-Algebra Stochastic Methods, 18 (1998), 131-147.
[15] H.-J. Vogel, On properties of dht∇ -symmetric categories, Contributions to General Algebra 11 (1999), 211-223.