Adjointness between theories and strict theories
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 163-212

Voir la notice de l'article provenant de la source Library of Science

The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a dhts-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities ox ≈ o and xo ≈ o, where o and i are the elements selected by the 0-ary operation symbols.
Keywords: symmetric monoidal category, dhts-category, partial theory, adjoint functor
@article{DMGAA_2003_23_2_a6,
     author = {Vogel, Hans-J\"urgen},
     title = {Adjointness between theories and strict theories},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {163--212},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/}
}
TY  - JOUR
AU  - Vogel, Hans-Jürgen
TI  - Adjointness between theories and strict theories
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 163
EP  - 212
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/
LA  - en
ID  - DMGAA_2003_23_2_a6
ER  - 
%0 Journal Article
%A Vogel, Hans-Jürgen
%T Adjointness between theories and strict theories
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 163-212
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/
%G en
%F DMGAA_2003_23_2_a6
Vogel, Hans-Jürgen. Adjointness between theories and strict theories. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 163-212. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a6/