Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2003_23_2_a2, author = {K\"uhr, Jan}, title = {Representable dually residuated lattice-ordered monoids}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {115--123}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a2/} }
TY - JOUR AU - Kühr, Jan TI - Representable dually residuated lattice-ordered monoids JO - Discussiones Mathematicae. General Algebra and Applications PY - 2003 SP - 115 EP - 123 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a2/ LA - en ID - DMGAA_2003_23_2_a2 ER -
Kühr, Jan. Representable dually residuated lattice-ordered monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a2/
[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981.
[2] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo BL-algebras: Part I, Mult.-Valued Logic 8 (2002), 673-714.
[3] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo BL-algebras: Part II, Mult.-Valued Logic 8 (2002), 717-750.
[4] A. Dvurecenskij, On pseudo MV-algebras, Soft Comput. 5 (2001), 347-354.
[5] A. Dvurecenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327.
[6] G. Georgescu, and A. Iorgulescu, Pseudo MV- algebras, Mult.-Valued Logic 6 (2001), 95-135.
[7] A.M.W. Glass, Partially Ordered Groups, World Scientific, Singapore-New Jersey-London-Hong Kong 1999.
[8] G. Grätzer, General Lattice Theory, Birkhäuser, Basel-Boston-Berlin 1998.
[9] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81-90.
[10] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. thesis, Palacký University, Olomouc 1996.
[11] T. Kovár, Two remarks on dually residuated lattice-ordered semigroups, Math. Slovaca 49 (1999), 17-18.
[12] J. Kühr, Ideals of non-commutative DRl-monoids, Czechoslovak Math. J., to appear.
[13] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohem. 128 (2003), 199-208.
[14] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca 53 (2003), 233-246.
[15] J. Rach unek, MV-algebras are categorically equivalent to a class of DRl1(i)-semigroups, Math. Bohem. 123 (1998), 437-441.
[16] J. Rach unek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohem. 126 (2001), 561-569.
[17] J. Rach unek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255-273.
[18] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. I, Math. Ann. 159 (1965), 105-114.
[19] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. III, Math. Ann. 167 (1966), 71-74.