Representable dually residuated lattice-ordered monoids
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 115-123.

Voir la notice de l'article provenant de la source Library of Science

Dually residuated lattice-ordered monoids (DRl-monoids) generalize lattice-ordered groups and include also some algebras related to fuzzy logic (e.g. GMV-algebras and pseudo BL-algebras). In the paper, we give some necessary and sufficient conditions for a DRl-monoid to be representable (i.e. a subdirect product of totally ordered DRl-monoids) and we prove that the class of representable DRl-monoids is a variety.
Keywords: DRl-monoid, ideal, prime ideal, polar, normal ideal, representable DRl-monoid
@article{DMGAA_2003_23_2_a2,
     author = {K\"uhr, Jan},
     title = {Representable dually residuated lattice-ordered monoids},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {115--123},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a2/}
}
TY  - JOUR
AU  - Kühr, Jan
TI  - Representable dually residuated lattice-ordered monoids
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 115
EP  - 123
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a2/
LA  - en
ID  - DMGAA_2003_23_2_a2
ER  - 
%0 Journal Article
%A Kühr, Jan
%T Representable dually residuated lattice-ordered monoids
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 115-123
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a2/
%G en
%F DMGAA_2003_23_2_a2
Kühr, Jan. Representable dually residuated lattice-ordered monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a2/

[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981.

[2] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo BL-algebras: Part I, Mult.-Valued Logic 8 (2002), 673-714.

[3] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo BL-algebras: Part II, Mult.-Valued Logic 8 (2002), 717-750.

[4] A. Dvurecenskij, On pseudo MV-algebras, Soft Comput. 5 (2001), 347-354.

[5] A. Dvurecenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327.

[6] G. Georgescu, and A. Iorgulescu, Pseudo MV- algebras, Mult.-Valued Logic 6 (2001), 95-135.

[7] A.M.W. Glass, Partially Ordered Groups, World Scientific, Singapore-New Jersey-London-Hong Kong 1999.

[8] G. Grätzer, General Lattice Theory, Birkhäuser, Basel-Boston-Berlin 1998.

[9] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81-90.

[10] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. thesis, Palacký University, Olomouc 1996.

[11] T. Kovár, Two remarks on dually residuated lattice-ordered semigroups, Math. Slovaca 49 (1999), 17-18.

[12] J. Kühr, Ideals of non-commutative DRl-monoids, Czechoslovak Math. J., to appear.

[13] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohem. 128 (2003), 199-208.

[14] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca 53 (2003), 233-246.

[15] J. Rach unek, MV-algebras are categorically equivalent to a class of DRl1(i)-semigroups, Math. Bohem. 123 (1998), 437-441.

[16] J. Rach unek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohem. 126 (2001), 561-569.

[17] J. Rach unek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255-273.

[18] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. I, Math. Ann. 159 (1965), 105-114.

[19] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. III, Math. Ann. 167 (1966), 71-74.