On lattice-ordered monoids
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 101-114.

Voir la notice de l'article provenant de la source Library of Science

In the paper lattice-ordered monoids and specially normal lattice-ordered monoids which are a generalization of dually residuated lattice-ordered semigroups are investigated. Normal lattice-ordered monoids are metricless normal lattice-ordered autometrized algebras. It is proved that in any lattice-ordered monoid A, a ∈ A and na ≥ 0 for some positive integer n imply a ≥ 0. A necessary and sufficient condition is found for a lattice-ordered monoid A, such that the set I of all invertible elements of A is a convex subset of A and A¯ ⊆ I, to be the direct product of the lattice-ordered group I and a lattice-ordered semigroup P with the least element 0.
Keywords: lattice-ordered monoid, normal lattice-ordered monoid, dually residuated lattice-ordered semigroup, direct decomposition, polar
@article{DMGAA_2003_23_2_a1,
     author = {Jasem, Milan},
     title = {On lattice-ordered monoids},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {101--114},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/}
}
TY  - JOUR
AU  - Jasem, Milan
TI  - On lattice-ordered monoids
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 101
EP  - 114
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/
LA  - en
ID  - DMGAA_2003_23_2_a1
ER  - 
%0 Journal Article
%A Jasem, Milan
%T On lattice-ordered monoids
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 101-114
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/
%G en
%F DMGAA_2003_23_2_a1
Jasem, Milan. On lattice-ordered monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 101-114. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/

[1] G. Birkhoff, Lattice Theory, Third edition, Amer. Math. Soc., Providence, RI, 1967.

[2] A.C. Choudhury, The doubly distributive m-lattice, Bull. Calcutta. Math. Soc. 47 (1957), 71-74.

[3] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York 1963.

[4] M. Hansen, Minimal prime ideals in autometrized algebras, Czech. Math. J. 44 (119) (1994), 81-90.

[5] M. Jasem, Weak isometries and direct decompositions of dually residuated lattice-ordered semigroups, Math. Slovaca 43 (1993), 119-136.

[6] T. Kovár, Any DRl-semigroup is the direct product of a commutative l-group and a DRl-semigroup with the least element, Discuss. Math.-Algebra Stochastic Methods 16 (1996), 99-105.

[7] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.

[8] T. Kovár, Two remarks on dually residuated lattice-ordered semigroups, Math. Slovaca 49 (1999), 17-18.

[9] T. Kovár, On (weak) zero-fixing isometries in dually residuated lattice-ordered semigroups, Math. Slovaca 50 (2000), 123-125.

[10] T. Kovár, Normal autometrized lattice-ordered algebras, Math. Slovaca, 50 (2000), 369-376.

[11] J. Rachnek, Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69.

[12] J. Rachnek, Polars in autometrized algebras, Czechoslovak Math. J. 39 (114) (1989), 681-685.

[13] J. Rachnek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117-122.

[14] J. Rachnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (123) (1998), 365-372.

[15] J. Rachnek, MV-algebras are categorically equivalent to a class of DRl1(i)-semigroups, Math. Bohemica 123 (1998), 437-441.

[16] K.L.N. Swamy, Dually residuated lattice-ordered semigroups, Math. Ann. 159 (1965), 105-114.

[17] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. II, Math. Ann. 160 (1965), 64-71.

[18] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. III, Math. Ann. 167 (1966), 71-74.

[19] K.L.N. Swamy and N.P. Rao, Ideals in autometrized algebras, J. Austral. Math. Soc. Ser. A 24 (1977), 362-374.

[20] K.L.N. Swamy and B.V. Subba Rao, Isometries in dually residuated lattice-ordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980), 369-379.