On lattice-ordered monoids
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 101-114

Voir la notice de l'article provenant de la source Library of Science

In the paper lattice-ordered monoids and specially normal lattice-ordered monoids which are a generalization of dually residuated lattice-ordered semigroups are investigated. Normal lattice-ordered monoids are metricless normal lattice-ordered autometrized algebras. It is proved that in any lattice-ordered monoid A, a ∈ A and na ≥ 0 for some positive integer n imply a ≥ 0. A necessary and sufficient condition is found for a lattice-ordered monoid A, such that the set I of all invertible elements of A is a convex subset of A and A¯ ⊆ I, to be the direct product of the lattice-ordered group I and a lattice-ordered semigroup P with the least element 0.
Keywords: lattice-ordered monoid, normal lattice-ordered monoid, dually residuated lattice-ordered semigroup, direct decomposition, polar
@article{DMGAA_2003_23_2_a1,
     author = {Jasem, Milan},
     title = {On lattice-ordered monoids},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {101--114},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/}
}
TY  - JOUR
AU  - Jasem, Milan
TI  - On lattice-ordered monoids
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 101
EP  - 114
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/
LA  - en
ID  - DMGAA_2003_23_2_a1
ER  - 
%0 Journal Article
%A Jasem, Milan
%T On lattice-ordered monoids
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 101-114
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/
%G en
%F DMGAA_2003_23_2_a1
Jasem, Milan. On lattice-ordered monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 101-114. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/