Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2003_23_2_a1, author = {Jasem, Milan}, title = {On lattice-ordered monoids}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {101--114}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/} }
Jasem, Milan. On lattice-ordered monoids. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 101-114. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a1/
[1] G. Birkhoff, Lattice Theory, Third edition, Amer. Math. Soc., Providence, RI, 1967.
[2] A.C. Choudhury, The doubly distributive m-lattice, Bull. Calcutta. Math. Soc. 47 (1957), 71-74.
[3] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York 1963.
[4] M. Hansen, Minimal prime ideals in autometrized algebras, Czech. Math. J. 44 (119) (1994), 81-90.
[5] M. Jasem, Weak isometries and direct decompositions of dually residuated lattice-ordered semigroups, Math. Slovaca 43 (1993), 119-136.
[6] T. Kovár, Any DRl-semigroup is the direct product of a commutative l-group and a DRl-semigroup with the least element, Discuss. Math.-Algebra Stochastic Methods 16 (1996), 99-105.
[7] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.
[8] T. Kovár, Two remarks on dually residuated lattice-ordered semigroups, Math. Slovaca 49 (1999), 17-18.
[9] T. Kovár, On (weak) zero-fixing isometries in dually residuated lattice-ordered semigroups, Math. Slovaca 50 (2000), 123-125.
[10] T. Kovár, Normal autometrized lattice-ordered algebras, Math. Slovaca, 50 (2000), 369-376.
[11] J. Rachnek, Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69.
[12] J. Rachnek, Polars in autometrized algebras, Czechoslovak Math. J. 39 (114) (1989), 681-685.
[13] J. Rachnek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117-122.
[14] J. Rachnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (123) (1998), 365-372.
[15] J. Rachnek, MV-algebras are categorically equivalent to a class of DRl1(i)-semigroups, Math. Bohemica 123 (1998), 437-441.
[16] K.L.N. Swamy, Dually residuated lattice-ordered semigroups, Math. Ann. 159 (1965), 105-114.
[17] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. II, Math. Ann. 160 (1965), 64-71.
[18] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. III, Math. Ann. 167 (1966), 71-74.
[19] K.L.N. Swamy and N.P. Rao, Ideals in autometrized algebras, J. Austral. Math. Soc. Ser. A 24 (1977), 362-374.
[20] K.L.N. Swamy and B.V. Subba Rao, Isometries in dually residuated lattice-ordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980), 369-379.