Finite orders and their minimal strict completion lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 85-100.

Voir la notice de l'article provenant de la source Library of Science

Whereas the Dedekind-MacNeille completion D(P) of a poset P is the minimal lattice L such that every element of L is a join of elements of P, the minimal strict completion D(P)∗ is the minimal lattice L such that the poset of join-irreducible elements of L is isomorphic to P. (These two completions are the same if every element of P is join-irreducible). In this paper we study lattices which are minimal strict completions of finite orders. Such lattices are in one-to-one correspondence with finite posets. Among other results we show that, for every finite poset P, D(P)∗ is always generated by its doubly-irreducible elements. Furthermore, we characterize the posets P for which D(P)∗ is a lower semimodular lattice and, equivalently, a modular lattice.
Keywords: atomistic lattice, join-irreducible element, distributive lattice, modular lattice, lower semimodular lattice, Dedekind-MacNeille completion, strict completion, weak order.
@article{DMGAA_2003_23_2_a0,
     author = {Bordalo, Gabriela and Monjardet, Bernard},
     title = {Finite orders and their minimal strict completion lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {85--100},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a0/}
}
TY  - JOUR
AU  - Bordalo, Gabriela
AU  - Monjardet, Bernard
TI  - Finite orders and their minimal strict completion lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 85
EP  - 100
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a0/
LA  - en
ID  - DMGAA_2003_23_2_a0
ER  - 
%0 Journal Article
%A Bordalo, Gabriela
%A Monjardet, Bernard
%T Finite orders and their minimal strict completion lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 85-100
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a0/
%G en
%F DMGAA_2003_23_2_a0
Bordalo, Gabriela; Monjardet, Bernard. Finite orders and their minimal strict completion lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 2, pp. 85-100. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_2_a0/

[1] G.H. Bordalo, A note on N-free modular lattices, manuscript (2000).

[2] G.H. Bordalo and B. Monjardet, Reducible classes of finite lattices, Order 13 (1996), 379-390.

[3] G.H. Bordalo and B. Monjardet, The lattice of strict completions of a finite poset, Algebra Universalis 47 (2002), 183-200.

[4] N. Caspard and B. Monjardet, The lattice of closure systems, closure operators and implicational systems on a finite set: a survey, Discrete Appl. Math. 127 (2003), 241-269.

[5] J. Dalík, Lattices of generating systems, Arch. Math. (Brno) 16 (1980), 137-151.

[6] J. Dalík, On semimodular lattices of generating systems, Arch. Math. (Brno) 18 (1982), 1-7.

[7] K. Deiters and M. Erné, Negations and contrapositions of complete lattices, Discrete Math. 181 (1995), 91-111.

[8] R. Freese, K. Jezek. and J.B. Nation, Free lattices, American Mathematical Society, Providence, RI, 1995.

[9] B. Leclerc and B. Monjardet, Ordres 'C.A.C.', and Corrections, Fund. Math. 79 (1973), 11-22, and 85 (1974), 97.

[10] B. Monjardet and R. Wille, On finite lattices generated by their doubly irreducible elements, Discrete Math. 73 (1989), 163-164.

[11] J.B. Nation and A. Pogel, The lattice of completions of an ordered set, Order 14 (1997) 1-7.

[12] L. Nourine, Private communication (2000).

[13] G. Robinson and E. Wolk, The embedding operators on a partially ordered set, Proc. Amer. Math. Soc. 8 (1957), 551-559.

[14] B. Seselja and A. Tepavcević, Collection of finite lattices generated by a poset, Order 17 (2000), 129-139.