@article{DMGAA_2003_23_1_a0,
author = {C\'aceres-Duque, Luis},
title = {An effective procedure for minimal bases of ideals in {Z[x]}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {5--11},
year = {2003},
volume = {23},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/}
}
Cáceres-Duque, Luis. An effective procedure for minimal bases of ideals in Z[x]. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/
[1] C.W. Ayoub, On Constructing Bases for Ideals in Polynomial Rings over the Integers, J. Number Theory 17 (1983), 204-225.
[2] L.F. Cáceres-Duque, Ultraproduct of Sets and Ideal Theories of Commutative Rings, Ph.D. dissertation, University of Iowa, Iowa City, IA, 1998.
[3] C.B. Hurd, Concerning Ideals in Z[x] and Zpn[x], Ph.D. dissertation, Pennsylvania State University, University Park, PA, 1970.
[4] L. Redei, Algebra, Vol 1, Pergamon Press, London 1967.
[5] F. Richman, Constructive Aspects of Noetherian Rings, Proc. Amer. Math. Soc. 44 (1974), 436-441.
[6] H. Simmons, The Solution of a Decision Problem for Several Classes of Rings, Pacific J. Math. 34 (1970), 547-557.
[7] G. Szekeres, A canonical basis for the ideals of a polynomial domain, Amer. Math. Monthly 59 (1952), 379-386.