An effective procedure for minimal bases of ideals in Z[x]
Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 5-11.

Voir la notice de l'article provenant de la source Library of Science

We give an effective procedure to find minimal bases for ideals of the ring of polynomials over the integers.
Keywords: ideals, minimal bases for ideals, polynomials over integers
@article{DMGAA_2003_23_1_a0,
     author = {C\'aceres-Duque, Luis},
     title = {An effective procedure for minimal bases of ideals in {Z[x]}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/}
}
TY  - JOUR
AU  - Cáceres-Duque, Luis
TI  - An effective procedure for minimal bases of ideals in Z[x]
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2003
SP  - 5
EP  - 11
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/
LA  - en
ID  - DMGAA_2003_23_1_a0
ER  - 
%0 Journal Article
%A Cáceres-Duque, Luis
%T An effective procedure for minimal bases of ideals in Z[x]
%J Discussiones Mathematicae. General Algebra and Applications
%D 2003
%P 5-11
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/
%G en
%F DMGAA_2003_23_1_a0
Cáceres-Duque, Luis. An effective procedure for minimal bases of ideals in Z[x]. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/

[1] C.W. Ayoub, On Constructing Bases for Ideals in Polynomial Rings over the Integers, J. Number Theory 17 (1983), 204-225.

[2] L.F. Cáceres-Duque, Ultraproduct of Sets and Ideal Theories of Commutative Rings, Ph.D. dissertation, University of Iowa, Iowa City, IA, 1998.

[3] C.B. Hurd, Concerning Ideals in Z[x] and Zpn[x], Ph.D. dissertation, Pennsylvania State University, University Park, PA, 1970.

[4] L. Redei, Algebra, Vol 1, Pergamon Press, London 1967.

[5] F. Richman, Constructive Aspects of Noetherian Rings, Proc. Amer. Math. Soc. 44 (1974), 436-441.

[6] H. Simmons, The Solution of a Decision Problem for Several Classes of Rings, Pacific J. Math. 34 (1970), 547-557.

[7] G. Szekeres, A canonical basis for the ideals of a polynomial domain, Amer. Math. Monthly 59 (1952), 379-386.