Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2003_23_1_a0, author = {C\'aceres-Duque, Luis}, title = {An effective procedure for minimal bases of ideals in {Z[x]}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--11}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/} }
TY - JOUR AU - Cáceres-Duque, Luis TI - An effective procedure for minimal bases of ideals in Z[x] JO - Discussiones Mathematicae. General Algebra and Applications PY - 2003 SP - 5 EP - 11 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/ LA - en ID - DMGAA_2003_23_1_a0 ER -
Cáceres-Duque, Luis. An effective procedure for minimal bases of ideals in Z[x]. Discussiones Mathematicae. General Algebra and Applications, Tome 23 (2003) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGAA_2003_23_1_a0/
[1] C.W. Ayoub, On Constructing Bases for Ideals in Polynomial Rings over the Integers, J. Number Theory 17 (1983), 204-225.
[2] L.F. Cáceres-Duque, Ultraproduct of Sets and Ideal Theories of Commutative Rings, Ph.D. dissertation, University of Iowa, Iowa City, IA, 1998.
[3] C.B. Hurd, Concerning Ideals in Z[x] and Zpn[x], Ph.D. dissertation, Pennsylvania State University, University Park, PA, 1970.
[4] L. Redei, Algebra, Vol 1, Pergamon Press, London 1967.
[5] F. Richman, Constructive Aspects of Noetherian Rings, Proc. Amer. Math. Soc. 44 (1974), 436-441.
[6] H. Simmons, The Solution of a Decision Problem for Several Classes of Rings, Pacific J. Math. 34 (1970), 547-557.
[7] G. Szekeres, A canonical basis for the ideals of a polynomial domain, Amer. Math. Monthly 59 (1952), 379-386.