Quasi-implication algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 183-198.

Voir la notice de l'article provenant de la source Library of Science

A quasi-implication algebra is introduced as an algebraic counterpart of an implication reduct of propositional logic having non-involutory negation (e.g. intuitionistic logic). We show that every pseudocomplemented semilattice induces a quasi-implication algebra (but not conversely). On the other hand, a more general algebra, a so-called pseudocomplemented q-semilattice is introduced and a mutual correspondence between this algebra and a quasi-implication algebra is shown.
Keywords: implication, non-involutory negation, quasi-implication algebra, implitcation algebra, pseudocomplemented semilattice, q-semilattice
@article{DMGAA_2002_22_2_a7,
     author = {Chajda, Ivan and Du\v{s}ek, Kamil},
     title = {Quasi-implication algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {183--198},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a7/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Dušek, Kamil
TI  - Quasi-implication algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 183
EP  - 198
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a7/
LA  - en
ID  - DMGAA_2002_22_2_a7
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Dušek, Kamil
%T Quasi-implication algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 183-198
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a7/
%G en
%F DMGAA_2002_22_2_a7
Chajda, Ivan; Dušek, Kamil. Quasi-implication algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 183-198. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a7/

[1] J.C. Abbott, Semi-boolean algebras, Mat. Vesnik 4 (1967), 177-198.

[2] R. Balbes, On free pseudo-complemented and relatively pseudo-complemented semi-lattices, Fund. Math. 78 (1973), 119-131.

[3] I. Chajda, Semi-implication algebra, Tatra Mt. Math. Publ. 5 (1995), 13-24.

[4] I. Chajda, An extension of relative pseudocomplementation to non-distributive lattices, Acta Sci. Math. (Szeged), to appear.

[5] A. Diego, Sur les algèbres de Hilbert, Gauthier-Villars, Paris 1966, (viii+55pp.).

[6] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514.