Classification systems and their lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 167-181.

Voir la notice de l'article provenant de la source Library of Science

We define and study classification systems in an arbitrary CJ-generated complete lattice L. Introducing a partial order among the classification systems of L, we obtain a complete lattice denoted by Cls(L). By using the elements of the classification systems, another lattice is also constructed: the box lattice B(L) of L. We show that B(L) is an atomistic complete lattice, moreover Cls(L)=Cls(B(L)). If B(L) is a pseudocomplemented lattice, then every classification system of L is independent and Cls(L) is a partition lattice.
Keywords: concept lattice, CJ-generated complete lattice, atomistic complete lattice, (independent) classification system, classification lattice, box lattice
@article{DMGAA_2002_22_2_a6,
     author = {Radeleczki, S\'andor},
     title = {Classification systems and their lattice},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {167--181},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a6/}
}
TY  - JOUR
AU  - Radeleczki, Sándor
TI  - Classification systems and their lattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 167
EP  - 181
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a6/
LA  - en
ID  - DMGAA_2002_22_2_a6
ER  - 
%0 Journal Article
%A Radeleczki, Sándor
%T Classification systems and their lattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 167-181
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a6/
%G en
%F DMGAA_2002_22_2_a6
Radeleczki, Sándor. Classification systems and their lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a6/

[1] R. Beazer, Pseudocomplemented algebras with Boolean congruence lattices, J. Austral. Math. Soc. 26 (1978), 163-168.

[2] B. Ganter and R. Wille, Formal Concept Analysis. Mathematical Foundations, Springer-Verlag, Berlin 1999.

[3] S. Radeleczki, Concept lattices and their application in Group Technology (Hungarian), 'Proceedings of International Computer Science Conference: microCAD'98 (Miskolc, 1998)', University of Miskolc 1999, 3-8.

[4] S. Radeleczki, Classification systems and the decomposition of a lattice into direct products, Math. Notes (Miskolc) 1 (2000), 145-156.

[5] E.T. Schmidt, A Survey on Congruence Lattice Representations, Teubner-texte zur Math., Band 42, Leipzig 1982.

[6] M. Stern, Semimodular Lattices. Theory and Applications, Cambridge University Press, Cambridge 1999.

[7] R. Wille, Subdirect decomposition of concept lattices, Algebra Universalis 17 (1983), 275-287.