An inverse matrix of an upper triangular matrix can be lower triangular
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 161-166.

Voir la notice de l'article provenant de la source Library of Science

In this note we explain why the group of n×n upper triangular matrices is defined usually over commutative ring while the full general linear group is defined over any associative ring.
Keywords: upper tringular invertible matrix, group of matrices, Dedekind-finite ring
@article{DMGAA_2002_22_2_a5,
     author = {Ho{\l}ubowski, Waldemar},
     title = {An inverse matrix of an upper triangular matrix can be lower triangular},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {161--166},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a5/}
}
TY  - JOUR
AU  - Hołubowski, Waldemar
TI  - An inverse matrix of an upper triangular matrix can be lower triangular
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 161
EP  - 166
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a5/
LA  - en
ID  - DMGAA_2002_22_2_a5
ER  - 
%0 Journal Article
%A Hołubowski, Waldemar
%T An inverse matrix of an upper triangular matrix can be lower triangular
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 161-166
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a5/
%G en
%F DMGAA_2002_22_2_a5
Hołubowski, Waldemar. An inverse matrix of an upper triangular matrix can be lower triangular. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 161-166. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a5/

[1] H. Anton and C. Rorres, Elementary Linear algebra. Applications version, 8-th edition, J. Wiley, New York 2000.

[2] C.M. Bang, A condition for two matrices to be inverses of each other, Amer. Math. Monthly (1974), 764-767.

[3] I.D. Ion and M. Constantinescu, Sur les anneaux Dedekind-finis, Italian J. Pure Appl. Math. 7 (2000), 19-25.

[4] N. Jacobson, Structure of rings, Amer. Math. Soc., RI, Providence 1956.

[5] M.I. Kargapolov and Yu. I. Merzlakov, Fundamentals of the theory of groups, Springer-Verlag, New York 1979.

[6] D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York 1982.

[7] A. Stepanov and N. Vavilov, Decomposition of transvections: a theme with variations, K- Theory 19 (2000), 109-153.