An inverse matrix of an upper triangular matrix can be lower triangular
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 161-166
Cet article a éte moissonné depuis la source Library of Science
In this note we explain why the group of n×n upper triangular matrices is defined usually over commutative ring while the full general linear group is defined over any associative ring.
Keywords:
upper tringular invertible matrix, group of matrices, Dedekind-finite ring
@article{DMGAA_2002_22_2_a5,
author = {Ho{\l}ubowski, Waldemar},
title = {An inverse matrix of an upper triangular matrix can be lower triangular},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {161--166},
year = {2002},
volume = {22},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a5/}
}
TY - JOUR AU - Hołubowski, Waldemar TI - An inverse matrix of an upper triangular matrix can be lower triangular JO - Discussiones Mathematicae. General Algebra and Applications PY - 2002 SP - 161 EP - 166 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a5/ LA - en ID - DMGAA_2002_22_2_a5 ER -
Hołubowski, Waldemar. An inverse matrix of an upper triangular matrix can be lower triangular. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 161-166. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a5/
[1] H. Anton and C. Rorres, Elementary Linear algebra. Applications version, 8-th edition, J. Wiley, New York 2000.
[2] C.M. Bang, A condition for two matrices to be inverses of each other, Amer. Math. Monthly (1974), 764-767.
[3] I.D. Ion and M. Constantinescu, Sur les anneaux Dedekind-finis, Italian J. Pure Appl. Math. 7 (2000), 19-25.
[4] N. Jacobson, Structure of rings, Amer. Math. Soc., RI, Providence 1956.
[5] M.I. Kargapolov and Yu. I. Merzlakov, Fundamentals of the theory of groups, Springer-Verlag, New York 1979.
[6] D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York 1982.
[7] A. Stepanov and N. Vavilov, Decomposition of transvections: a theme with variations, K- Theory 19 (2000), 109-153.