Congruence submodularity
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 131-139.

Voir la notice de l'article provenant de la source Library of Science

We present a countable infinite chain of conditions which are essentially weaker then congruence modularity (with exception of first two). For varieties of algebras, the third of these conditions, the so called 4-submodularity, is equivalent to congruence modularity. This is not true for single algebras in general. These conditions are characterized by Maltsev type conditions.
Keywords: congruence lattice, modularity, congruence k-submodularity
@article{DMGAA_2002_22_2_a2,
     author = {Chajda, Ivan and Hala\v{s}, Radom{\'\i}r},
     title = {Congruence submodularity},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a2/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Halaš, Radomír
TI  - Congruence submodularity
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 131
EP  - 139
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a2/
LA  - en
ID  - DMGAA_2002_22_2_a2
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Halaš, Radomír
%T Congruence submodularity
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 131-139
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a2/
%G en
%F DMGAA_2002_22_2_a2
Chajda, Ivan; Halaš, Radomír. Congruence submodularity. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 131-139. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a2/

[1] I. Chajda and K. Głazek, A Basic Course on General Algebra, Technical University Press, Zielona Góra (Poland), 2000.

[2] A. Day, A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull. 12 (1969), 167-173.

[3] B. Jónsson, On the representation of lattices, Math. Scand. 1 (1953), 193-206.